In recent years, the industry's responsibility to join in sustainable manufacturing becomes huge, while innovating sustainability has been a new trend. Industrial enterprises are pursuing energy reduction to meet future needs for sustainable globalization and government legislations for green manufacturing. To run a manufacturing line in an energy-efficient manner, an energy-oriented maintenance methodology is developed. At the machine layer, the multi-attribute model (MAM) method is extended by modeling the energy attribute. Preventive maintenance (PM) intervals of each machine are dynamically scheduled according to the machine deterioration, maintenance effects, and environmental conditions. At the system layer, a novel energy saving window (ESW) policy is proposed to reduce energy for the whole line. Energy consumption interactivities, batch production characteristics, and system-layer maintenance opportunities are comprehensively considered. Real-time choice of PM adjustments is scheduled by comparing the energy savings of advanced PM and delayed PM. The results prove the energy reduction achieved by this MAM-ESW methodology. It effectively utilizes standby power, reduces energy consumption, avoids manufacturing breakdown, and decreases scheduling complexity. Furthermore, this energy-oriented maintenance framework can be applied not only in the automotive industry but also for a broader range of manufacturing domains such as the aerospace, semiconductor, and chemical industries.

References

References
1.
Xia
,
T.
,
Jin
,
X.
,
Xi
,
L.
, and
Ni
,
J.
,
2015
, “
Production-Driven Opportunistic Maintenance for Batch Production Based on MAM-APB Scheduling
,”
Eur. J. Oper. Res.
,
240
(
3
), pp.
781
790
.
2.
Jayal
,
A. D.
,
Badurdeen
,
F.
,
Dillon
,
O. W.
, Jr.
, and
Jawahir
,
I. S.
,
2010
, “
Sustainable Manufacturing: Modeling and Optimization Challenges at the Product, Process and System Levels
,”
CIRP J. Manuf. Sci. Technol.
,
2
(
3
), pp.
144
152
.
3.
Hamzah
,
S.
, and
Kobayashi
,
K.
,
2013
, “
Utilizing Mid-Long Term Maintenance Management Policy for Sustainable Maintenance of Infrastructure Facilities
,”
Proc. Environ. Sci.
,
17
, pp.
478
484
.
4.
Lee
,
J.
,
Kao
,
H. A.
, and
Yang
,
S.
,
2014
, “
Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment
,”
Proc. CIRP
,
16
, pp.
3
8
.
5.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
6.
Zou
,
J.
,
Arinez
,
J.
,
Chang
,
Q.
, and
Lei
,
Y.
,
2016
, “
Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121009
.
7.
Zhang
,
H.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2017
, “
Scheduling of a Single Flow Shop for Minimal Energy Cost Under Real-Time Electricity Pricing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
014502
.
8.
Xu
,
K.
, and
Tang
,
K.
,
2017
, “
Optimal Workpiece Setup for Time-Efficient and Energy-Saving Five-Axis Machining of Freeform Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051003
.
9.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2006
, “
Stream-of-Variation (SoV)-Based Measurement Scheme Analysis in Multistation Machining Systems
,”
IEEE T. Autom. Sci. Eng.
,
3
(
4
), pp.
407
422
.
10.
Zhu
,
X.
,
Hu
,
S. J.
,
Koren
,
Y.
, and
Marin
,
S. P.
,
2008
, “
Modeling of Manufacturing Complexity in Mixed-Model Assembly Lines
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051013
.
11.
Lee
,
C. W.
,
2009
, “
Dynamic Optimization of the Grinding Process in Batch Production
,”
ASME J. Manuf. Sci. Eng.
,
131
(
2
), p.
021006
.
12.
Cardenas-Barron
,
L. E.
,
2009
, “
On Optimal Batch Sizing in a Multi-Stage Production System With Rework Consideration
,”
Eur. J. Oper. Res.
,
196
(
3
), pp.
1238
1244
.
13.
Rafiee
,
K.
,
Feng
,
Q.
, and
Coit
,
D. W.
,
2014
, “
Reliability Modeling for Dependent Competing Failure Processes With Changing Degradation Rate
,”
IIE Trans.
,
46
(
5
), pp.
483
496
.
14.
Xia
,
T.
,
Xi
,
L.
,
Pan
,
E.
,
Fang
,
X.
, and
Gebraeel
,
N.
,
2017
, “
Lease-Oriented Opportunistic Maintenance for Multi-Unit Leased Systems Under Product-Service Paradigm
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071005
.
15.
Tao
,
X.
,
Xia
,
T.
, and
Xi
,
L.
,
2017
, “
Dynamic Opportunistic Maintenance Scheduling for Series Systems Based on Theory of Constraints (TOC)–VLLTW Methodology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021009
.
16.
Tian
,
Z.
,
2012
, “
An Artificial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring
,”
J. Intell. Manuf.
,
23
(
2
), pp.
227
237
.
17.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process
,
42
(
1–2
), pp.
314
334
.
18.
Xia
,
T.
,
Jin
,
X.
,
Xi
,
L.
,
Zhang
,
Y.
, and
Ni
,
J.
,
2015
, “
Operating Load Based Real-Time Rolling Grey Forecasting for Machine Health Prognosis in Dynamic Maintenance Schedule
,”
J. Intell. Manuf.
,
26
(
2
), pp.
269
280
.
19.
Elwany
,
A. H.
, and
Gebraeel
,
N.
,
2008
, “
Sensor-Driven Prognostic Models for Equipment Replacement and Spare Parts Inventory
,”
IIE Trans.
,
40
(
7
), pp.
629
639
.
20.
Liao
,
W.
,
Pan
,
E.
, and
Xi
,
L.
,
2010
, “
Preventive Maintenance Scheduling for Repairable System With Deterioration
,”
J. Intell. Manuf.
,
21
(
6
), pp.
875
884
.
21.
Xia
,
T.
,
Xi
,
L.
,
Zhou
,
X.
, and
Du
,
S.
,
2012
, “
Modeling and Optimizing Maintenance Schedule for Energy Systems Subject to Degradation
,”
Comput. Ind. Eng.
,
63
(
3
), pp.
607
614
.
22.
Zhou
,
J.
,
Djurdjanovic
,
D.
,
Ivy
,
J.
, and
Ni
,
J.
,
2007
, “
Integrated Reconfiguration and Age-Based Preventive Maintenance Decision Making
,”
IIE Trans.
,
39
(
12
), pp.
1085
1102
.
23.
Jin
,
X.
, and
Ni
,
J.
,
2013
, “
Joint Production and Preventive Maintenance Strategy for Manufacturing Systems With Stochastic Demand
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031016
.
24.
Celen
,
M.
, and
Djurdjanovic
,
D.
,
2015
, “
Integrated Maintenance Decision-Making and Product Sequencing in Flexible Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041006
.
25.
Li
,
L.
,
You
,
M.
, and
Ni
,
J.
,
2009
, “
Reliability-Based Dynamic Maintenance Threshold for Failure Prevention of Continuously Monitored Degrading Systems
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031010
.
26.
Xia
,
T.
,
Xi
,
L.
,
Zhou
,
X.
, and
Lee
,
J.
,
2012
, “
Dynamic Maintenance Decision-Making for Series-Parallel Manufacturing System Based on MAM-MTW Methodology
,”
Eur. J. Oper. Res.
,
221
(
1
), pp.
231
240
.
27.
Ni
,
J.
, and
Jin
,
X.
,
2012
, “
Decision Support Systems for Effective Maintenance Operations
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
411
414
.
28.
Gu
,
X.
,
Jin
,
X.
, and
Ni
,
J.
,
2015
, “
Prediction of Passive Maintenance Opportunity Windows on Bottleneck Machines in Complex Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031017
.
29.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
,
2007
, “
Maintenance Opportunity Planning System
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
661
668
.
30.
Derigent
,
W.
,
Thomas
,
E.
,
Levrat
,
E.
, and
Lung
,
B.
,
2009
, “
Opportunistic Maintenance Based on Fuzzy Modelling of Component Proximity
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
29
32
.
31.
Ni
,
J.
,
Gu
,
X.
, and
Jin
,
X.
,
2015
, “
Preventive Maintenance Opportunities for Large Production Systems
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
447
450
.
32.
Sun
,
Z.
, and
Li
,
L.
,
2013
, “
Opportunity Estimation for Real-Time Energy Control of Sustainable Manufacturing Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
1
), pp.
38
44
.
33.
Sari
,
E.
,
Shaharoun
,
A. M.
,
Ma'aram
,
A.
, and
Yazid
,
A. M.
,
2015
, “
Sustainable Maintenance Performance Measures: A Pilot Survey in Malaysian Automotive Companies
,”
Proc. CIRP
,
26
, pp.
443
448
.
34.
Ye
,
X.
,
Xia
,
X.
,
Zhang
,
L.
, and
Zhu
,
B.
,
2015
, “
Optimal Maintenance Planning for Sustainable Energy Efficiency Lighting Retrofit Projects by a Control System Approach
,”
Control Eng. Pract.
,
37
(
4
), pp.
1
10
.
35.
Hoang
,
A.
,
Do
,
P.
, and
Iung
,
B.
,
2017
, “
Energy Efficiency Performance-Based Prognostics for Aided Maintenance Decision-Making: Application to a Manufacturing Platform
,”
J. Clean. Prod.
,
142
(
Pt. 4
), pp.
2838
2857
.
36.
Xu
,
W.
, and
Cao
,
L.
,
2014
, “
Energy Efficiency Analysis of Machine Tools With Periodic Maintenance
,”
Int. J. Prod. Res.
,
52
(
18
), pp.
5273
5285
.
37.
Doyen
,
L.
, and
Gaudoin
,
O.
,
2004
, “
Classes of Imperfect Repair Models Based on Reduction of Failure Intensity or Virtual Age
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
45
56
.
38.
Pham
,
H.
, and
Wang
,
H.
,
1996
, “
Imperfect Maintenance
,”
Eur. J. Oper. Res.
,
94
(
3
), pp.
425
438
.
39.
Cheng
,
C.
,
Yang
,
K.
, and
Hwang
,
C.
,
1999
, “
Evaluating Attack Helicopters by AHP Based on Linguistic Variable Weight
,”
Eur. J. Oper. Res.
,
116
(
2
), pp.
423
435
.
You do not currently have access to this content.