Shape control of composite parts is vital for large-scale production and integration of composite materials in the aerospace industry. The current industry practice of shape control uses passive manual metrology. This has three major limitations: (i) low efficiency: it requires multiple trials and a longer time to achieve the desired shape during the assembly process; (ii) nonoptimal: it is challenging to reach optimal deviation reduction; and (iii) experience-dependent: highly skilled engineers are required during the assembly process. This paper describes an automated shape control system that can adjust composite parts to an optimal configuration in a manner that is highly effective and efficient. The objective is accomplished by (i) building a finite element analysis (FEA) platform, validated by experimental data; (ii) developing a surrogate model with consideration of actuator uncertainty, part uncertainty, modeling uncertainty, and unquantified uncertainty to achieve predictive performance and embedding the model into a feed-forward control algorithm; and (iii) conducting multivariable optimization to determine the optimal actions of actuators. We show that the surrogate model considering uncertainties (SMU) achieves satisfactory prediction performance and that the automated optimal shape control system can significantly reduce the assembly time with improved dimensional quality.

References

References
1.
Chawla
,
K. K.
,
2012
,
Composite Materials: Science and Engineering
,
Springer Science & Business Media
,
New York
, Chap. 5.
2.
Gates
,
D.
,
2007
, “Boeing Finds 787 Pieces Are Not Quite a Perfect Fit,” Seattle Times Aerospace Report, Seattle Times, Seattle, WA, accessed Nov. 29, 2017, http://www.seattletimes.com/business/boeing-finds-787-pieces-arent-quite-a-perfect-fit/
3.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
756
762
.
4.
Shi
,
J.
,
2006
,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC Press
,
Boca Raton, FL
.
5.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2001
, “
Linear State Space Modeling of Dimensional Machining Errors
,”
NAMRI/SME Trans.
,
29
, pp.
541
548
.https://faculty.engr.utexas.edu/sites/default/files/limes/files/j42.pdf
6.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2003
, “
Dimensional Errors of Fixtures, Locating and Measurement Datum Features in the Stream of Variation Modeling in Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
716
730
.
7.
Camelio
,
J.
,
Hu
,
S.
, and
Ceglarek
,
D.
,
2004
, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
8.
Liu
,
S.
, and
Hu
,
S.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
9.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part I: Single-Station Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121003
.
10.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part II: Multistation Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121004
.
11.
Li
,
Z.
, and
Zhou
,
S.
,
2005
, “
Robust Method of Multiple Variation Sources Identification in Manufacturing Processes for Quality Improvement
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
326
336
.
12.
Zhang
,
B.
, and
Ni
,
J.
,
2003
, “
Adaptive Product, Process and Tooling Design Strategy for Optimal Dimensional Quality of Automotive Body Assemblies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
835
843
.
13.
Abad
,
A. G.
,
Paynabar
,
K.
, and
Jin
,
J.
,
2011
, “
Modeling and Analysis of Operator Effects on Process Quality and Throughput in Mixed Model Assembly Systems
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021016
.
14.
Camelio
,
J. A.
,
Hu
,
S.
, and
Marin
,
S. P.
,
2004
, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
355
360
.
15.
Zhong
,
J.
,
Liu
,
J. A.
, and
Shi
,
J. J.
,
2010
, “
Predictive Control Considering Model Uncertainty for Variation Reduction in Multistage Assembly Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
4
), pp.
724
735
.
16.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2007
, “
Online Stochastic Control of Dimensional Quality in Multistation Manufacturing Systems
,”
J. Eng. Manuf.
,
221
(
5
), pp.
865
880
.
17.
Åström
,
K. J.
, and
Wittenmark
,
B.
,
2013
,
Adaptive Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
18.
Basar
,
T.
, and
Bernhard
,
P.
,
1995
,
H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach
,
2nd ed.
,
Birkhäuser
,
Boston, MA
.
19.
Tanaka
,
K.
, and
Sugeno
,
M.
,
1992
, “
Stability Analysis and Design of Fuzzy Control Systems
,”
Fuzzy Sets Syst.
,
45
(
2
), pp.
135
156
.
20.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
,
1996
,
Robust and Optimal Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
21.
Hansen
,
L. P.
, and
Sargent
,
T. J.
,
2001
, “
Robust Control and Model Uncertainty
,”
Am. Econ. Rev.
,
91
(
2
), pp.
60
66
.
22.
Uusitalo
,
L.
,
Lehikoinen
,
A.
,
Helle
,
I.
, and
Myrberg
,
K.
,
2015
, “
An Overview of Methods to Evaluate Uncertainty of Deterministic Models in Decision Support
,”
Environ. Modell. Software
,
63
, pp.
24
31
.
23.
Draper
,
D.
,
1995
, “
Assessment and Propagation of Model Uncertainty
,”
J. R. Stat. Soc. Ser. B
,
57
(1), pp.
45
97
.https://classes.soe.ucsc.edu/ams206/Winter11/draper-1995-model-uncertainty.pdf
24.
Ayyub
,
B. M.
, and
Klir
,
G. J.
,
2006
,
Uncertainty Modeling and Analysis in Engineering and the Sciences
,
CRC Press
, Boca Raton, FL.
25.
Jones
,
R. M.
,
1998
,
Mechanics of Composite Materials
,
CRC Press
,
Boca Raton, FL
.
26.
Neter
,
J.
,
Kutner
,
M. H.
,
Nachtsheim
,
C. J.
, and
Wasserman
,
W.
,
1996
,
Applied Linear Statistical Models
, Vol.
4
,
McGraw-Hill
,
New York
.
27.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer Science & Business Media
,
New York
.
28.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2010
, “
Stochastic Kriging for Simulation Metamodeling
,”
Oper. Res.
,
58
(
2
), pp.
371
382
.
29.
Stein
,
M. L.
,
1999
,
Interpolation of Spatial Data: Some Theory for Kriging
,
Springer Science & Business Media
, New York.
30.
United States Department of Transportation, Federal Aviation Administration,
2012
, “A. M. T. Handbook-Airframe,” United States Department of Transportation, Federal Aviation Administration, Oklahoma City, OK, accessed Nov. 29, 2017, https://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_airframe_handbook/
31.
Izquierdo
,
L. E.
,
Shi
,
J.
,
Hu
,
S. J.
, and
Wampler
,
C. W.
,
2007
, “
Feedforward Control of Multistage Assembly Processes Using Programmable Tooling
,”
Trans. NAMRI/SME
,
35
, pp.
295
302
.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A3D79055C092D00301A49EB9C1659A8E?doi=10.1.1.157.857&rep=rep1&type=pdf
32.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
New York
.
33.
ANSYS,
2013
, “ANSYS Composite PrepPost User's Guide,” ANSYS, Inc., Canonsburg, PA, accessed Nov. 29, 2017, http://www.academia.edu/25099111/ANSYS_Composite_PrepPost_Users_Guide
34.
Wang
,
Y.
,
Yue
,
X.
,
Tuo
,
R.
,
Hunt
,
J. H.
, and
Shi
,
J.
, 2017, “Effective Model Calibration Via Sensible Variable Identification and Adjustment, With Application to Composite Fuselage Simulation,” (submitted).
You do not currently have access to this content.