Rapid heating and cooling thermal cycle of metals in selective laser melting (SLM) generates high tensile residual stress which leads to part distortion. However, how to fast and accurately predict residual stress and the resulted part distortion remains a critical issue. It is not practical to simulate every single laser scan to build up a functional part due to the exceedingly high computational cost. Therefore, scaling up the material deposition rate via increasing heat source dimension and layer thickness would dramatically reduce the computational cost. In this study, a multiscale scalable modeling approach has been developed to enable fast prediction of part distortion and residual stress. Case studies on residual stress and distortion of the L-shaped bar and the bridge structure were presented via the deposition scalability and validation with the experimental data. High residual stress gradient in the building direction was found from high tensile on the surface to high compressive in the core. The part distortion can be predicted with reasonable accuracy when the block thickness is scaled up by 50 times the layer thickness from 30 μm to 1500 μm. The influence of laser scanning strategy on residual stress distribution and distortion magnitude of the bridges has shown that orthogonal scanning pattern between two neighboring block layers is beneficial for reducing part distortion.

References

References
1.
Kruth
,
J.
,
Leu
,
M.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
525
540
.
2.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann. Manuf. Technol
,
52
(
2
), pp.
589
609
.
3.
Vandenbroucke
,
B.
, and
Kruth
,
J.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyping J.
,
13
(
4
), pp.
196
203
.
4.
Clare
,
A. T.
,
Chalker
,
P. R.
,
Davies
,
S.
,
Sutcliffe
,
C. J.
, and
Tsopanos
,
S.
,
2008
, “
Selective Laser Melting of High Aspect Ratio 3D Nickel–Titanium Structures Two Way Trained for MEMS Applications
,”
Int. J. Mech. Mater. Des
,
4
(
2
), pp.
181
187
.
5.
Hollander
,
D. A.
,
Von Walter
,
M.
,
Wirtz
,
T.
,
Sellei
,
R.
,
Schmidt-Rohlfing
,
B.
,
Paar
,
O.
, and
Erli
,
H.
,
2006
, “
Structural, Mechanical and In Vitro Characterization of Individually Structured Ti–6Al–4V Produced by Direct Laser Forming
,”
Biomaterials
,
27
(
7
), pp.
955
963
.
6.
Rochus
,
P.
,
Plesseria
,
J.
,
Van Elsen
,
M.
,
Kruth
,
J.
,
Carrus
,
R.
, and
Dormal
,
T.
,
2007
, “
New Applications of Rapid Prototyping and Rapid Manufacturing (RP/RM) Technologies for Space Instrumentation
,”
Acta Astronaut.
,
61
(
1
), pp.
352
359
.
7.
Lewis
,
G. K.
, and
Schlienger
,
E.
,
2000
, “
Practical Considerations and Capabilities for Laser Assisted Direct Metal Deposition
,”
Mater. Des.
,
21
(
4
), pp.
417
423
.
8.
Dadbakhsh
,
S.
,
Hao
,
L.
, and
Sewell
,
N.
,
2012
, “
Effect of Selective Laser Melting Layout on the Quality of Stainless Steel Parts
,”
Rapid Prototyping J.
,
18
(
3
), pp.
241
249
.
9.
Tolochko
,
N. K.
,
Mozzharov
,
S. E.
,
Yadroitsev
,
I. A.
,
Laoui
,
T.
,
Froyen
,
L.
,
Titov
,
V. I.
, and
Ignatiev
,
M. B.
,
2004
, “
Balling Processes During Selective Laser Treatment of Powders
,”
Rapid Prototyping J.
,
10
(
2
), pp.
78
87
.
10.
Shiomi
,
M.
,
Osakada
,
K.
,
Nakamura
,
K.
,
Yamashita
,
T.
, and
Abe
,
F.
,
2004
, “
Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
195
198
.
11.
Kruth
,
J.
,
Deckers
,
J.
,
Yasa
,
E.
, and
Wauthlé
,
R.
,
2012
, “
Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method
,”
Proc. Inst. Mech. Eng., Part. B
,
226
(
6
), pp.
980
991
.
12.
Mercelis
,
P.
, and
Kruth
,
J.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
.
13.
Dai
,
K.
, and
Shaw
,
L.
,
2004
, “
Thermal and Mechanical Finite Element Modeling of Laser Forming From Metal and Ceramic Powders
,”
Acta Mater.
,
52
(
1
), pp.
69
80
.
14.
Aggarangsi
,
P.
, and
Beuth
,
J. L.
,
2006
, “
Localized Preheating Approaches for Reducing Residual Stress in Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 14–16, pp.
709
720
.https://sffsymposium.engr.utexas.edu/Manuscripts/2006/2006-61-Aggarangsi.pdf
15.
Hodge
,
N.
,
Ferencz
,
R.
, and
Solberg
,
J.
,
2014
, “
Implementation of a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Comput. Mech.
,
54
(
1
), pp.
33
51
.
16.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
.
17.
Desmaison
,
O.
,
Pires
,
P.
,
Levesque
,
G.
,
Peralta
,
A.
,
Sundarraj
,
S.
,
Makinde
,
A.
,
Jagdale
,
V.
, and
Megahed
,
M.
,
2017
, “
Influence of Computational Grid and Deposit Volume on Residual Stress and Distortion Prediction Accuracy for Additive Manufacturing Modeling
,”
Fourth World Congress on Integrated Computational Materials Engineering
(
ICME
), Ypsilanti, MI, May 21–25, pp.
365
374
.
18.
Li
,
C.
,
Liu
,
J. F.
, and
Guo
,
Y. B.
,
2016
, “
Prediction of Residual Stress and Part Distortion in Selective Laser Melting
,”
Proc. CIRP
,
45
, pp.
171
174
.
19.
Li
,
C.
,
Fu
,
C. H.
,
Guo
,
Y. B.
, and
Fang
,
F. Z.
,
2016
, “
A Multiscale Modeling Approach for Fast Prediction of Part Distortion in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
703
712
.
20.
Li
,
C.
,
Fu
,
C. H.
,
Guo
,
Y. B.
, and
Fang
,
F. Z.
,
2015
, “
Fast Prediction and Validation of Part Distortion in Selective Laser Melting
,”
Proc. Manuf.
,
1
, pp.
355
365
.
21.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
22.
Keller
,
N.
, and
Ploshikhin
,
V.
,
2014
, “
New Method for Fast Predictions of Residual Stress and Distortion of Am Parts
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 4–6, pp.
1229
1237
.https://sffsymposium.engr.utexas.edu/sites/default/files/2014-096-Keller.pdf
23.
Denlinger
,
E. R.
,
Heigel
,
J. C.
, and
Michaleris
,
P.
,
2015
, “
Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti-6Al-4V
,”
Proc. Inst. Mech. Eng., Part B
,
229
(
10
), pp.
1803
1813
.
24.
Yuan
,
I. G.
,
1993
, “
Prediction of Residual Stresses in Butt Welded Plates Using Inherent Strains
,”
ASME J. Eng. Mater. Technol.
,
115
(
4
), pp.
417
423
.
25.
Deng
,
D.
, and
Murakawa
,
H.
,
2008
, “
Prediction of Welding Distortion and Residual Stress in a Thin Plate Butt-Welded Joint
,”
Comput. Mater. Sci
,
43
(
2
), pp.
353
365
.
26.
Wu
,
A. S.
,
Brown
,
D. W.
,
Kumar
,
M.
,
Gallegos
,
G. F.
, and
King
,
W. E.
,
2014
, “
An Experimental Investigation Into Additive Manufacturing-Induced Residual Stresses in 316l Stainless Steel
,”
Metall. Mater. Trans. A
,
45
(
13
), pp.
6260
6270
.
27.
Li
,
C.
,
Liu
,
J. F.
,
Guo
,
Y. B.
, and
Li
,
Z. Y.
,
2015
, “
A Temperature-Thread Multiscale Modeling Approach for Efficient Prediction of Part Distortion by Selective Laser Melting
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 10–12, pp.
1166
1181
.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-95-Li.pdf
28.
Li
,
C.
,
Liu
,
J. F.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2017
, “
Efficient Predictive Model of Part Distortion and Residual Stress in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
157
168
.
29.
HKS
,
2008
, “
ABAQUS User's Manual, Ver. 6.8
,”
HKS
,
Providence, RI
.
30.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E. W.
, eds.,
1993
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
, Metals Park, OH.
31.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
, Materials Park, OH.
32.
NiDI, 2017, “High Temperature Characteristics of Stainless Steels,” Nickel Institute, Toronto, ON, Canada, accessed Jan. 27, 2018, https://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/High_TemperatureCharacteristicsofStainlessSteel_9004_.pdf
33.
Fu
,
C. H.
, and
Guo
,
Y. B.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
34.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Vignes
,
R. M.
,
2016
, “
Experimental Comparison of Residual Stresses for a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Addit. Manuf.
,
12
(
Pt. B
), pp.
159
168
.
You do not currently have access to this content.