Development of monitoring devices becomes crucially important in selective laser melting (SLM) due to the high process complexity and the high value of the products obtained. This work discusses the design of a coaxial monitoring system for SLM using multiple sensors. In particular, an optical model is developed for the propagation of the process emission from the workpiece to the monitoring module. The model is used to determine the field of view (FOV) around the monitored zone. The lens arrangements and the optical filters are chosen according to the model results. They were implemented to construct a monitoring module consisting of two cameras viewing visible and near-infrared wavelength bands, as well as a photodiode viewing the back-reflected laser emission, all integrated in a coaxial configuration. The system functionality is tested with a prototype SLM machine during the processing of 18Ni300 maraging steel, a material known to be prone to porosity. In particular, different remelting strategies were employed as possible correction strategies to reduce porosity. The signals were interpreted as being indicators of the change in absorptivity of the laser light by the powder bed, of the plasma and molten pool, as well as of the evolution of the temperature field.

References

References
1.
Kawahito
,
Y.
,
Mizutani
,
M.
, and
Katayama
,
S.
,
2007
, “
Elucidation of High-Power Fibre Laser Welding Phenomena of Stainless Steel and Effect of Factors on Weld Geometry
,”
J. Phys. D Appl. Phys.
,
40
(
19
), pp.
5854
5859
.
2.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
(
1–4
), pp.
87
98
.
3.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
4.
Song
,
B.
,
Zhao
,
X.
,
Li
,
S.
,
Han
,
C.
,
Wei
,
Q.
,
Wen
,
S.
,
Liu
,
J.
, and
Shi
,
Y.
,
2015
, “
Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts: A Review
,”
Front. Mech. Eng.
,
10
(
2
), pp.
111
125
.
5.
Harrison
,
N. J.
,
Todd
,
I.
, and
Mumtaz
,
K.
,
2015
, “
Reduction of Micro-Cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach
,”
Acta Mater.
,
94
, pp.
59
68
.
6.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
616
622
.
7.
Weller
,
C.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2015
, “
Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing Revisited
,”
Int. J. Prod. Econ.
,
164
, pp.
43
56
.
8.
Hole
,
C.
,
2016
, “
Cost and Practicality of in-Process Monitoring for Metal Additive Manufacturing
,”
Met Addit. Manuf.
,
2
(
4
), pp.
63
69
.
9.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p. 0
60801
.
10.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and in-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
11.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J. P.
,
2011
, “
Determination of Geometrical Factors in Layerwise Laser Melting Using Optical Process Monitoring
,”
Opt. Lasers Eng.
,
49
(
12
), pp.
1440
1446
.
12.
Clijsters
,
S.
,
Craeghs
,
T.
,
Buls
,
S.
,
Kempen
,
K.
, and
Kruth
,
J. P.
,
2014
, “
In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt pool Monitoring System
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
1089
1101
.
13.
Berumen
,
S.
,
Bechmann
,
F.
,
Lindner
,
S.
,
Kruth
,
J.-P.
, and
Craeghs
,
T.
,
2010
, “
Quality Control of Laser- and Powder Bed-Based Additive Manufacturing (AM) Technologies
,”
Phys. Proc.
,
5
(
Pt. B
), pp.
617
622
.
14.
Craeghs
,
T.
,
Clijsters
,
S.
,
Kruth
,
J.-P.
,
Bechmann
,
F.
, and
Ebert
,
M.-C.
,
2012
, “
Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring
,”
Phys Procedia
,
39
, pp.
753
759
.
15.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
, and
Kruth
,
J.-P.
,
2011
, “
Online Quality Control of Selective Laser Melting
,” 22nd Annual International Solid Freeform Fabrication (
SFF
), Austin, TX, Aug. 8–10, pp.
212
226
.
16.
Craeghs
,
T.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J. P.
,
2010
, “
Feedback Control of Layerwise Laser Melting Using Optical Sensors
,”
Phys Procedia
,
5
(
Pt. b
), pp.
505
514
.
17.
Kanko
,
J. A.
,
Sibley
,
A. P.
, and
Fraser
,
J. M.
,
2016
, “
In Situ Morphology-Based Defect Detection of Selective Laser Melting Through Inline Coherent Imaging
,”
J. Mater. Process. Technol.
,
231
, pp.
488
500
.
18.
Neef
,
A.
,
Seyda
,
V.
,
Herzog
,
D.
,
Emmelmann
,
C.
,
Schönleber
,
M.
, and
Kogel-Hollacher
,
M.
,
2014
, “
Low Coherence Interferometry in Selective Laser Melting
,”
Phys Procedia
,
56
, pp.
82
89
.
19.
Thombansen
,
U.
,
Gatej
,
A.
, and
Pereira
,
M.
,
2014
, “
Process Observation in Fiber Laser–Based Selective Laser Melting
,”
Opt. Eng.
,
54
(
1
), p. 0
11008
.
20.
Kleszczynski
,
S.
,
Jocobsmuhlen
,
J. Z.
, and
Sehrt
,
J. T.
,
2012
, “
Error Detection in Laser Beam Melting Systems by High Resolution Imaging
,” 23rd Annual International Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 6–8, pp.
1
13
.
21.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M. F.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,” 23rd Annual International Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 6–8, pp.
999
1014
.
22.
Furumoto
,
T.
,
Ueda
,
T.
,
Alkahari
,
M. R.
, and
Hosokawa
,
A.
,
2013
, “
Investigation of Laser Consolidation Process for Metal Powder by Two-Color Pyrometer and High-Speed Video Camera
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
223
226
.
23.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
, and
Yadroitsava
,
I.
,
2014
, “
Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution
,”
J. Alloys Compd.
,
583
, pp.
404
409
.
24.
Grasso
,
M.
,
Laguzza
,
V.
,
Semeraro
,
Q.
, and
Colosimo
,
B. M.
,
2016
, “
In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p. 0
51001
.
25.
Liu
,
Y.
,
Yang
,
Y.
,
Mai
,
S.
,
Wang
,
D.
, and
Song
,
C.
,
2015
, “
Investigation Into Spatter Behavior During Selective Laser Melting of AISI 316 L Stainless Steel Powder
,”
Mater. Des.
,
87
, pp.
797
806
.
26.
Matthews
,
M. J.
,
Guss
,
G.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Depond
,
P. J.
, and
King
,
W. E.
,
2016
, “
Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes
,”
Acta Mater.
,
114
, pp.
33
42
.
27.
Lane
,
B.
,
Whitenton
,
E.
, and
Moylan
,
S.
,
2016
, “
Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion
,”
Proc. SPIE
,
9861
, p.
986104
.
28.
Hirvimäki
,
M.
,
Manninen
,
M.
,
Lehti
,
A.
,
Happonen
,
A.
,
Salminen
,
A.
, and
Nyrhilä
,
S.
,
2013
, “
Evaluation of Different Monitoring Methods of Laser Additive Manufacturing of Stainless Steel
,”
Adv. Mater. Res.
,
651
, pp.
812
819
.
29.
Furumoto
,
T.
,
Ueda
,
T.
,
Kobayashi
,
N.
,
Yassin
,
A.
,
Hosokawa
,
A.
, and
Abe
,
S.
,
2009
, “
Study on Laser Consolidation of Metal Powder With Yb:fiber Laser-Evaluation of Line Consolidation Structure
,”
J. Mater. Process. Technol.
,
209
(
18–19
), pp.
5973
5980
.
30.
Demir
,
A. G.
, and
Previtali
,
B.
,
2017
, “
Investigation of Remelting and Preheating in SLM of 18Ni300 Maraging Steel as Corrective and Preventive Measures for Porosity Reduction
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2697
2709
.
31.
Demir
,
A. G.
,
Colombo
,
P.
, and
Previtali
,
B.
,
2017
, “
From Pulsed to Continuous Wave Emission in SLM with Contemporary Fiber Laser Sources: Effect of Temporal and Spatial Pulse Overlap in Part Quality
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2701
2714
.
32.
Kaierle
,
S.
,
Abels
,
P.
, and
Kratzsch
,
C.
,
2005
, “
Process Monitoring and Control for Laser Materials Processing—An Overview
,” Third International WLT-Conference Lasers in Manufacturing (
LIM
), Munich, Germany, June 13–16, pp.
101
105
.
33.
Colombo
,
D.
,
Colosimo
,
B. M.
, and
Previtali
,
B.
,
2013
, “
Comparison of Methods for Data Analysis in the Remote Monitoring of Remote Laser Welding
,”
Opt. Lasers Eng.
,
51
(
1
), pp.
34
46
.
34.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
5
(
2
), pp.
1
25
.
35.
Mumtaz
,
K. A.
, and
Hopkinson
,
N.
,
2010
, “
Selective Laser Melting of Thin Wall Parts Using Pulse Shaping
,”
J. Mater. Process. Technol.
,
210
(
2
), pp.
279
287
.
36.
Oiwa
,
S.
,
Kawahito
,
Y.
, and
Katayama
,
S.
,
2009
, “
Optical Properties of Laser Induced Plasma During High Power Laser Welding
,” 28th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Orlando, FL, Nov. 2–5, pp.
359
365
.
37.
Wang
,
C.-M.
,
Meng
,
X.-X.
,
Huang
,
W.
,
Hu
,
X.-Y.
, and
Duan
,
A.-Q.
,
2011
, “
Role of Side Assisting Gas on Plasma and Energy Transmission During CO2 Laser Welding
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
668
674
.
38.
Miyamoto
,
J. T.
, and
Inoue
,
T.
,
2002
, “
Characterizing Keyhole Plasma Light Emission and Plasma Plume Scattering for Monitoring 20 kW Class Laser Welding Processes Characterizing Keyhole Plasma Light Emission and Plasma Plume Scattering for Monitoring 20 kW Class CO 2 Laser Welding Processes
,”
J. Laser Appl.
,
14
(
3
), pp.
146
153
.
39.
Colombo
,
D.
, and
Previtali
,
B.
,
2010
, “
Through Optical Combiner Monitoring of Fiber Laser Processes
,”
Int. J. Mater. Form.
,
3
(
Suppl. 1
), pp.
1123
1126
.
40.
Pedrotti
,
L.
,
2008
, “Basic Geometrical Optics,” Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, accessed Dec. 5, 2017, https://spie.org/Documents/Publications/00%20STEP%20Module%2003.pdf
41.
Yasa
,
E.
,
Kempen
,
K.
, and
Kruth
,
J.
,
2010
, “
Microstructure and Mechanical Properties of Maraging Steel 300 After Selective Laser Melting
,” 21st International Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 9–11, pp.
383
396
.
42.
Demir
,
A. G.
,
Monguzzi
,
L.
, and
Previtali
,
B.
,
2017
, “
Selective Laser Melting of Pure Zn With High Density for Biodegradable Implant Manufacturing
,”
Addit. Manuf.
,
15
, pp.
20
28
.
43.
Demir
,
A. G.
,
Pangovski
,
K.
,
O'Neill
,
W.
, and
Previtali
,
B.
,
2015
, “
Investigation of Pulse Shape Characteristics on the Laser Ablation Dynamics of TiN Coatings in the Ns Regime
,”
J. Phys. D Appl. Phys.
,
48
, p.
235202
.
44.
Spierings
,
A. B.
, and
Levy
,
G.
,
2009
, “
Comparison of Density of Stainless Steel 316 L Parts Produced With Selective Laser Melting Using Different Powder Grades
,” 20th Annual International Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 3–5, pp.
342
353
.
45.
Mcvey
,
R. W.
,
Melnychuk
,
R. M.
,
Todd
,
J. A.
, and
Martukanitz
,
R. P.
,
2007
, “
Absorption of Laser Irradiation in a Porous Powder Layer
,”
J. Laser Appl.
,
19
(
4
), pp.
214
224
.
46.
Bi
,
G.
,
Gasser
,
A.
,
Wissenbach
,
K.
,
Drenker
,
A.
, and
Poprawe
,
R.
,
2006
, “
Characterization of the Process Control for the Direct Laser Metallic Powder Deposition
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
2676
2683
.
47.
Ferrar
,
B.
,
Mullen
,
L.
,
Jones
,
E.
,
Stamp
,
R.
, and
Sutcliffe
,
C. J.
,
2012
, “
Gas Flow Effects on Selective Laser Melting (SLM) Manufacturing Performance
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
355
364
.
48.
Yasa
,
E.
, and
Kruth
,
J. P.
,
2010
, “
Investigation of Laser and Process Parameters for Selective Laser Erosion
,”
Precis. Eng.
,
34
(
1
), pp.
101
112
.
You do not currently have access to this content.