Designing products for recyclability is driven by environmental and economic goals. Several design for assembly (DFA) rules and parameters can be used to gauge the recyclability index of product designs. These indices can be used for comparative analysis of the recyclability of different products. This assists the designer in making design choices related to the product's end of life. However, many of the existing recyclability indices are only available after design and manufacturing decisions are made. If such design decisions could be made earlier in the design process, when the design space is less bound, recyclability could be considered earlier. A case study is performed to determine if DFA parameters could be utilized to determine product recyclability. The parameters were obtained from existing DFA time estimate tables. The results of the study indicated that the recyclability of the product, as defined by established recyclability metrics, could be predicted through DFA measures. A negative correlation was realized between recyclability and insertion time. Components that required greater time to mate during assembly adversely affected the recyclability of the product. Conversely, handing time was found to have no predictive capability on product recyclability. These findings are used to develop a recyclability index that utilizes the DFA measures, allowing designers and engineers to determine recyclability earlier in the design process.

References

References
1.
Villalba
,
G.
,
Segarra
,
M.
,
Chimenos
,
J. M.
, and
Espiell
,
F.
,
2004
, “
Using the Recyclability Index of Materials as a Tool for Design for Disassembly
,”
Ecol. Econ.
,
50
(
3–4
), pp.
195
200
.
2.
Hagelüken
,
C.
, and
Corti
,
C. W.
,
2010
, “
Recycling of Gold From Electronics: Cost-Effective Use Through ‘Design for Recycling’
,”
Gold Bull.
,
43
(
3
), pp.
209
220
.
3.
Fegade
,
V.
,
Shrivatsava
,
R. L.
, and
Kale
,
A. V.
,
2015
, “
Design for Remanufacturing: Methods and Their Approaches
,”
Mater. Today Proc.
,
2
(
4–5
), pp.
1849
1858
.
4.
Arain
,
M. B.
,
Kazi
,
T. G.
,
Jamali
,
M. K.
,
Jalbani
,
N.
,
Afridi
,
H. I.
, and
Shah
,
A.
,
2008
, “
Total Dissolved and Bioavailable Elements in Water and Sediment Samples and Their Accumulation in Oreochromis Mossambicus of Polluted Manchar Lake
,”
Chemosphere
,
70
(
10
), pp.
1845
1856
.
5.
Vincent Wang
,
X.
,
Lopez N
,
B. N.
,
Ijomah
,
W.
,
Wang
,
L.
, and
Li
,
J.
,
2015
, “
A Smart Cloud-Based System for the WEEE Recovery/Recycling
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061010
.
6.
Xia
,
K.
,
Gao
,
L.
,
Wang
,
L.
,
Li
,
W.
, and
Chao
,
K.-M.
,
2015
, “
A Semantic Information Services Framework for Sustainable WEEE Management Toward Cloud-Based Remanufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p. 0
61011
.
7.
Aluminum Association,
2011
, “
Aluminum: The Element of Sustainability
,” Aluminum Association, Arlington County, VA,
A North American Aluminum Industry Sustainability Report
.http://www.aluminum.org/sites/default/files/Aluminum_The_Element_of_Sustainability.pdf
8.
US EPA
,
2017
, “
Advancing Sustainable Materials Management: Facts and Figures
,” United States Environmental Protection Agency, Washington, DC,
Report
.https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report
9.
Ilgin
,
M. A.
, and
Taşoğlu
,
G. T.
,
2016
, “
Simultaneous Determination of Disassembly Sequence and Disassembly-to-Order Decisions Using Simulation Optimization
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101012
.
10.
Das
,
S. K.
, and
Naik
,
S.
,
2002
, “
Process Planning for Product Disassembly
,”
Int. J. Prod. Res.
,
40
(
6
), pp.
1335
1355
.
11.
Soh
,
S. L.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2015
, “
Application of Design for Disassembly From Remanufacturing Perspective
,”
Procedia CIRP
,
26
, pp.
577
582
.
12.
Mule
,
J. Y.
,
2012
, “
Design for Disassembly Approaches on Product Development
,”
Int. J. Sci. Eng. Res.
,
3
(
6
), pp.
996
1000
.https://www.ijser.org/onlineResearchPaperViewer.aspx?Design-for-Disassembly-Approaches-on-Product-Development.pdf
13.
Dowie
,
T.
, and
Simon
,
M.
,
1994
, “Guidelines for Designing for Disassembly and Recycling,”
Manchester Metropolitan University
,
Manchester, UK
.
14.
Desai
,
A.
, and
Mital
,
A.
,
2003
, “
Evaluation of Disassemblability to Enable Design for Disassembly in Mass Production
,”
Int. J. Ind. Ergon.
,
32
(
4
), pp.
265
281
.
15.
Johnson
,
M. R.
,
1994
, “
A Methodology for Planning of Product Disassembly for Recycling, Remanufacturing and Reuse
,”
Master's thesis
, University of Windsor, Windsor, ON, Canadahttp://scholar.uwindsor.ca/etd/660/.
16.
Duflou
,
J. R.
,
Willems
,
B.
, and
Dewulf
,
W.
,
2006
, “
Towards Self-Disassembling Products Design Solutions for Economically Feasible Large-Scale Disassembly
,”
Innovation in Life Cycle Engineering and Sustainable Development
, Springer, Dordrecht, The Netherlands, pp.
87
110
.
17.
Penev
,
K. D.
,
1996
, “
Design of Disassembly Systems: A Systematic Approach
,”
Doctoral thesis
, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.https://pure.tue.nl/ws/files/1429390/460691.pdf
18.
Nevins
,
J. L.
, and
Whitney
,
D. E.
,
1989
,
Concurrent Design of Products and Processes: A Strategy for the Next Generation in Manufacturing
,
McGraw-Hill
,
New York
.
19.
Chen
,
K.-Z.
,
2001
, “
Development of Integrated Design for Disassembly and Recycling in Concurrent Engineering
,”
Integr. Manuf. Syst.
,
12
(
1
), pp.
67
79
.
20.
Boothroyd
,
G.
,
1987
, “
Design for Assembly—The Key to Design for Manufacture
,”
Int. J. Adv. Manuf. Technol.
,
2
(
3
), pp.
3
11
.
21.
Andreasen
,
M. M.
,
Kähler
,
S.
, and
Lund
,
T.
,
1988
, “
Design for Assembly
,” IFS, Bedford, UK.
22.
James
,
B. D.
,
Spisak
,
A. B.
, and
Colella
,
W. G.
,
2014
, “
Design for Manufacturing and Assembly Cost Estimate Methodology for Transportation Fuel Cell Systems
,”
ASME J. Manuf. Sci. Eng.
,
136
(2), p.
024503
.
23.
Swift
,
K. G.
,
1981
,
Design for Assembly Handbook
,
Salford University
,
Salford, UK
.
24.
Mathieson
,
J. L.
,
Wallace
,
B. A.
, and
Summers
,
J. D.
,
2013
, “
Assembly Time Modelling Through Connective Complexity Metrics
,”
Int. J. Comput. Integr. Manuf.
,
26
(
10
), pp.
955
967
.
25.
Dewhurst
,
P.
, and
Boothroyd
,
G.
,
1987
, “
Design for Assembly in Action
,”
Assem. Eng.
,
30
(
1
), pp.
64
68
.
26.
Warnecke
,
H. J.
, and
Bässler
,
R.
,
1988
, “
Design for Assembly—Part of the Design Process
,”
CIRP Ann. Technol.
,
37
(
1
), pp.
1
4
.
27.
Burke
,
G. J.
, and
Carlson
,
J. B.
,
1989
, “
DFA at Ford Motor Company
,”
Fourth International Conference on Product Design for Manufacture and Assembly
, Newport, RI, June 5–6.
28.
Kerr
,
W.
, and
Ryan
,
C.
,
2001
, “
Eco-Efficiency Gains From Remanufacturing: A Case Study of Photocopier Remanufacturing at Fuji Xerox Australia
,”
J. Clean. Prod.
,
9
(
1
), pp.
75
81
.
29.
Miyakawa
,
S.
, and
Ohashi
,
T.
,
1986
, “
The Hitachi Assemblability Evaluation Method (AEM)
,”
International Conference on Product Design for Assembly
, Newport, RI, Apr. 15–17, pp.
15
17
.
30.
Hatcher
,
G. D.
,
Ijomah
,
W. L.
, and
Windmill
,
J. F. C.
,
2013
, “
Design for Remanufacturing in China: A Case Study of Electrical and Electronic Equipment
,”
J. Remanufacturing
,
3
(
1
), p.
1
.https://www.econstor.eu/handle/10419/108896
31.
Kirkland
,
C.
,
1988
, “
Meet Two Architects of Design-Integrated Manufacturing
,”
Plast. World
,
46
(
12
), pp.
44
45
.
32.
Tatikonda
,
M. V.
,
1994
, “
Design for Assembly: A Critical Methodology for Product Reengineering and New Product Development
,”
Prod. Invent. Manag. J.
,
35
(
1
), p.
31
.http://home.kelley.iupui.edu/tatikond/webpage/Publications/G_Design%20for%20assembly_A%20critical%20methodology%20for%20product%20reengineering%20and%20new%20product%20development.pdf
33.
Boothroyd
,
G.
, and
Dewhurst
,
P.
,
1983
,
Design for Assembly Handbook
,
University of Massachusetts
,
Amherst, MA
.
34.
Seaver
,
W. B.
,
1994
, “
Design Considerations for Remanufacturability, Recyclability and Reusability of User Interface Modules
,” IEEE International Symposium on Electronics and the Environment (
ISEE
), San Francisco, CA, May 2–4, pp.
241
245
.
35.
Sundin
,
E.
,
Bjorkman
,
M.
, and
Jacobsson
,
N.
,
2000
, “
Analysis of Service Selling and Design for Remanufacturing
,” IEEE International Symposium on Electronics and the Environment (
ISEE
), San Francisco, CA, May 10, pp.
272
277
.
36.
Sheng
,
P.
, and
Hertwich
,
E.
,
1998
, “
Indices for Comparative Waste Assessment in Environmentally-Conscious Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
120
(
1
), pp.
129
140
.
37.
Simon
,
M.
,
1993
, “
Objective Assessment of Design for Recycling
,”
Ninth International Conference on Engineering Design (ICED 93)
, Hague, The Netherlands, Aug. 17–19, pp.
832
835
.
38.
Bebb
,
H. B.
,
1990
, “
Implementation of Concurrent Engineering Practices
,”
Concurrent Engineering Design Conference Proceedings
.
39.
Dewhurst
,
P.
,
1993
, “
Product Design for Manufacture-Design for Disassembly
,”
Ind. Eng.
,
25
(
9
), pp.
26
28
.
40.
Zandin
,
K. B.
,
2002
,
MOST Work Measurement Systems
,
CRC Press
,
Boca Raton, FL
.
41.
Patil
,
S. S.
,
Shinde
,
B. M.
,
Katikar
,
R. S.
, and
Kavade
,
M. V.
,
2004
, “
MOST an Advanced Technique to Improve Productivity
,” National Conference on Recent Trends in CAD/CAM/CAE (
NCRTC-2004
), Urun Islampur, India, June 23, pp. 12–18.http://www.bvucoepune.edu.in/pdf%27s/Research%20and%20Publication/Research%20Publications_2004-05/National%20Conference_2004-05/MOST%20An%20Advance%20Prof%20S%20S%20Patil.pdf
42.
Dowie
,
T.
, and
Kelly
,
P.
,
1994
, “
Estimation of Disassembly Times
,” Manchester Metropolitan University, Manchester, UK, Technical Report No. DDR/TR15.
43.
Bras
,
B.
, and
Emblemsvåg
,
J.
,
1996
, “
Activity-Based Costing and Uncertainty in Designing for the Life-Cycle
,”
Design for X: Concurrent engineering imperatives
, Springer, Dordrecht, The Netherlands, pp.
398
423
.
44.
Chiodo
,
J.
,
2005
, “
Design for Disassembly Guidelines
,”
Act. Disassem. Res.
,
2
(
1
), pp.
29
37
.http://www.engen.org.au/index_htm_files/DFD-guidelines.pdf
45.
Iakovou
,
E.
,
Moussiopoulos
,
N.
,
Xanthopoulos
,
A.
,
Achillas
,
C.
,
Michailidis
,
N.
,
Chatzipanagioti
,
M.
,
Koroneos
,
C.
,
Bouzakis
,
K. D.
, and
Kikis
,
V.
,
2009
, “
A Methodological Framework for End-of-Life Management of Electronic Products
,”
Resour. Conserv. Recycl.
,
53
(
6
), pp.
329
339
.
46.
Smith
,
S.
,
Hsu
,
L. Y.
, and
Smith
,
G. C.
,
2016
, “
Partial Disassembly Sequence Planning Based on Cost-Benefit Analysis
,”
J. Clean. Prod.
,
139
, pp.
729
739
.
47.
Dombrowski
,
U.
,
Schmidt
,
S.
, and
Schmidtchen
,
K.
,
2014
, “
Analysis and Integration of Design for X Approaches in Lean Design as Basis for a Lifecycle Optimized Product Design
,”
Procedia CIRP
,
15
, pp.
385
390
.
48.
Holt
,
R.
, and
Barnes
,
C.
,
2010
, “
Towards an Integrated Approach to ‘Design for X’: An Agenda for Decision-Based DFX Research
,”
Res. Eng. Des.
,
21
(
2
), pp.
123
136
.
49.
Dombrowski
,
U.
, and
Schmidt
,
S.
,
2013
, “
Integration of Design for X Approaches in the Concept of Lean Design to Enable a Holistic Product Design
,” IEEE International Conference on Industrial Engineering and Engineering Management (
IEEM
), Bangkok, Thailand, Dec. 10–13, pp.
1515
1519
.
50.
Freedman
,
D. A.
,
2009
,
Statistical Models: Theory and Practice
,
Cambridge University Press
,
Cambridge, UK
.
51.
Slinker
,
B. K.
, and
Glantz
,
S. A.
,
2008
, “
Multiple Linear Regression
,”
Circulation
,
117
(
13
), pp.
1732
1737
.
52.
Schroeder
,
L. D.
,
Sjoquist
,
D. L.
, and
Stephan
,
P. E.
,
2016
,
Understanding Regression Analysis: An Introductory Guide
,
Sage Publications
,
Thousand Oaks, CA
.
53.
Li
,
Z.
,
He
,
J.
,
Lai
,
X.
,
Huang
,
Y.
,
Zhou
,
T.
,
Vatankhah Barenji
,
A.
, and
Wang
,
W. M.
,
2017
, “
Evaluation of Product Recyclability at the Product Design Phase: A Time-Series Forecasting Methodology
,”
Int. J. Comput. Integr. Manuf.
, epub.
54.
Romdhane
,
M. S. B.
,
Madisetti
,
V. K.
, and
Hines
,
J. W.
,
1996
, “
Design for Reuse
,”
Quick-Turnaround ASIC Design in VHDL
,
Springer
,
Boston, MA
, pp.
49
85
.
You do not currently have access to this content.