In recent years, many titanium alloys have emerged, each of them associated with a range of different heat treatments. Thus, several microstructures have been studied to varying degrees. For example, the Ti64 titanium alloy, mostly known for its α + β structure, can display a different state: the structure, inducing nonstandard mechanical behavior. This work presents chip formation in this specific microstructure where a strong heterogeneity is observed and where the shear band formation is a function of the relationship between the shear direction and the microstructure orientation. From these reasons, major differences are found in the chip morphology, within the same cutting condition, in comparison to the bimodal structure where a single chip morphology is obtained for each cutting condition. A section of this paper is devoted to the presentation of the β microstructure where different configurations can be seen within the same chip. Next, the influence of cutting conditions on the chip formation is studied. To highlight the specific chip formation process, a temperature model has been developed and combined with cutting force analysis to understand clearly the specificity of the chip formation for this structure. Finally, the discussion explains the different chip formation scenarios according to the workpiece microstructure to be cut.

References

References
1.
Komanduri
,
R.
, and
Von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
69
(
2
), pp.
179
188
.
2.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
.
3.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti–6Al–4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
(
7
), pp.
1055
1070
.
4.
Nouari
,
M.
, and
Makich
,
H.
,
2013
, “
Experimental Investigation on the Effect of the Material Microstructure on Tool Wear When Machining Hard Titanium Alloys: Ti–6Al–4V and Ti-555
,”
Int. J. Refract. Met. Hard Mater.
,
41
, pp.
259
269
.
5.
Wagner
,
V.
, and
Duc
,
E.
,
2014
, “
Study of Ti-1023 Milling With Toroidal Tool
,”
Int. J. Adv. Manuf. Technol.
,
75
(
9–12
), pp.
1473
1491
.
6.
Braham-Bouchnak
,
T.
,
Germain
,
G.
,
Morel
,
A.
, and
Furet
,
B.
,
2015
, “
Influence of High-Pressure Coolant Assistance on the Machinability of the Titanium Alloy Ti555–3
,”
Mach. Sci. Technol.
,
19
(
1
), pp.
134
151
.
7.
Arrazola
,
P.-J.
,
Garay
,
A.
,
Iriarte
,
L.-M.
,
Armendia
,
M.
,
Marya
,
S.
, and
Maitre
,
F. L.
,
2009
, “
Machinability of Titanium Alloys (Ti6Al4V and Ti555. 3)
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2223
2230
.
8.
Wagner
,
V.
,
Baili
,
M.
, and
Dessein
,
G.
,
2015
, “
The Relationship Between the Cutting Speed, Tool Wear, and Chip Formation During Ti-5553 Dry Cutting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
893
912
.
9.
Yessine
,
A.
,
Guénaël
,
G.
,
Amine
,
A.
, and
Benoit
,
F.
,
2013
, “
Degradation Modes and Tool Wear Mechanisms in Finish and Rough Machining of Ti17 Titanium Alloy Under High-Pressure Water Jet Assistance
,”
Wear
,
305
(
1
–2), pp.
228
237
.
10.
Shaw
,
M. C.
, and
Vyas
,
A.
,
1998
, “
The Mechanism of Chip Formation With Hard Turning Steel
,”
CIRP Ann. Manuf. Technol.
,
47
(
1
), pp.
77
82
.
11.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
186
193
.
12.
Viktor
,
P. A.
,
2004
, “
Tribology of Metal Cutting
,”
Mechanical Tribology
,
Elsevier, Amsterdam, The Netherlands
, pp.
307
346
.
13.
Manyindo
,
B. M.
, and
Oxley
,
P. L. B.
,
1986
, “
Modelling the Catastrophic Shear Type of Chip When Machining Stainless Steel
,”
Proc. Inst. Mech. Eng., Part C
,
200
(
5
), pp.
349
358
.
14.
Guosheng
,
S.
, and
Zhanqiang
,
L.
,
2013
, “
Analytical and Experimental Study on Formation of Concentrated Shear Band of Saw Tooth Chip in High-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1735
1740
.
15.
Pottier
,
T.
,
Germain
,
G.
,
Calamaz
,
M.
,
Morel
,
A.
, and
Coupard
,
D.
,
2014
, “
Sub-Millimeter Measurement of Finite Strains at Cutting Tool Tip Vicinity
,”
Exp. Mech.
,
54
(
6
), pp.
1031
1042
.
16.
Harzallah
,
M.
,
Pottier
,
T.
,
Senatore
,
J.
,
Mousseigne
,
M.
,
Germain
,
G.
, and
Landon
,
L.
,
2017
, “
Experimental Investigations of Ti-6al-4v Chip Generation and Thermo-Mechanical Couplings in Orthogonal Cutting
,”
Int. J. Mech. Sci.
,
134
, pp.
189
202
.
17.
Sutter
,
G.
, and
List
,
G.
,
2013
, “
Very High Speed Cutting of Ti–6Al–4V Titanium Alloy–Change in Morphology and Mechanism of Chip Formation
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
37
43
.
18.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2d Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
19.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081001
.
20.
Nguyen
,
T.
,
Kwon
,
P.
,
Kang
,
D.
, and
Bieler
,
T. R.
,
2016
, “
The Origin of Flank Wear in Turning Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121013
.
21.
Philippe
,
C.
,
Besse
,
M.
, and
Thierry
,
G.
,
2012
, “
In Situ Tem Study of Dislocation Slip in a Metastable β Titanium Alloy
,”
Scr. Mater.
,
66
(
6
), pp.
371
373
.
22.
Lütjering
,
G.
,
1998
, “
Influence of Processing on Microstructure and Mechanical Properties of (α+ β) Titanium Alloys
,”
Mater. Sci. Eng.: A
,
243
(
1
), pp.
32
45
.
23.
Lütjering
,
G.
, and
Williams
,
J. C.
,
2003
,
Titanium
, Vol.
2
,
Springer
,
New York
.
24.
AFNOR,
1994
, “Tool-Material-Pair. Domaine De Fonctionnement Des Outils Coupants, AFNOR, Saint-Denis, France, Standard No e 66-520-6.
25.
Joshi
,
S.
,
Tewari
,
A.
, and
Joshi
,
S.
,
2013
, “
Influence of Preheating on Chip Segmentation and Microstructure in Orthogonal Machining of Ti6al4v
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061017
.
26.
Cotterell
,
M.
,
Ares
,
E.
,
Yanes
,
J.
,
López
,
F.
,
Hernandez
,
P.
, and
Peláez
,
G.
,
2013
, “
Temperature and Strain Measurement During Chip Formation in Orthogonal Cutting Conditions Applied to Ti–6Al–4V
,”
Procedia Eng.
,
63
, pp.
922
930
.
27.
Ma
,
J.
,
Ge
,
X.
,
Chang
,
S. I.
, and
Lei
,
S.
,
2014
, “
Assessment of Cutting Energy Consumption and Energy Efficiency in Machining of 4140 Steel
,”
Int. J. Adv. Manuf. Technol.
,
74
(
9–12
), pp.
1701
1708
.
28.
Barelli
,
F.
,
Wagner
,
V.
,
Laheurte
,
R.
,
Dessein
,
G.
,
Darnis
,
P.
,
Cahuc
,
O.
, and
Mousseigne
,
M.
,
2016
, “
Orthogonal Cutting of TA6V Alloys With Chamfered Tools: Analysis of Tool–Chip Contact Lengths
,”
Proc. Inst. Mech. Eng., Part B
,
231
(
13
), pp.
2384
2395
.
29.
Hoyne
,
A. C.
,
Nath
,
C.
, and
Kapoor
,
S. G.
,
2015
, “
On Cutting Temperature Measurement During Titanium Machining With an Atomization-Based Cutting Fluid Spray System
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
024502
.
You do not currently have access to this content.