Significant advancements in the field of additive manufacturing (AM) have increased the popularity of AM in mainstream industries. The dimensional accuracy and surface finish of parts manufactured using AM depend on the AM process and the accompanying process parameters. Part build orientation is one of the most critical process parameters, since it has a direct impact on the part quality measurement metrics such as cusp error, manufacturability concerns for geometric features such as thin regions and small fusible openings, and support structure parameters. In conjunction with the build orientation, the cyclic heating and cooling of the material involved in the AM processes lead to nonuniform deformations throughout the part. These factors cumulatively affect the design conformity, surface finish, and the postprocessing requirements of the manufactured parts. In this paper, a two-step part build orientation optimization and thermal compensation methodology is presented to minimize the geometric inaccuracies resulting in the part during the AM process. In the first step, a weighted optimization model is used to determine the optimal build orientation for a part with respect to the aforementioned part quality and manufacturability metrics. In the second step, a novel artificial neural network (ANN)-based geometric compensation methodology is used on the part in its optimal orientation to make appropriate geometric modifications to counteract the thermal effects resulting from the AM process. The effectiveness of this compensation is assessed on an example part using a new point cloud to part conformity metric and shows significant improvements in the manufactured part's geometric accuracy.

References

References
1.
Ranjan
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2015
, “
Design for Manufacturability in Additive Manufacturing Using a Graph Based Approach
,”
ASME
Paper No. MSEC2015-9448.
2.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
.
3.
Klahn
,
C.
,
Leutenecker
,
B.
, and
Meboldt
,
M.
,
2014
, “
Design for Additive Manufacturing–Supporting the Substitution of Components in Series Products
,”
Procedia CIRP
,
21
, pp.
138
143
.
4.
Ranjan
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2017
, “
Integration of Design for Manufacturing Methods With Topology Optimization in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061007
.
5.
Gao
,
W.
,
Zhang
,
Y.
, and
Ramanujan
,
D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
.
6.
Kulkarni
,
P.
,
Marsan
,
A.
, and
Dutta
,
D.
,
2000
, “
A Review of Process Planning Techniques in Layered Manufacturing
,”
Rapid Prototyping J.
,
6
(
1
), pp.
18
35
.
7.
Ollison
,
T.
, and
Berisso
,
K.
,
2010
, “
Three-Dimensional Printing Build Variables That Impact Cylindricity
,”
J. Ind. Technol.
,
26
(
1
), pp.
2
10
.http://c.ymcdn.com/sites/www.atmae.org/resource/resmgr/JIT/ollison010510.pdf
8.
Lynn-Charney
,
C.
, and
Rosen
,
D. W.
,
2000
, “
Usage of Accuracy Models in Stereolithography Process Planning
,”
Rapid Prototyping J.
,
6
(
2
), pp.
77
87
.
9.
Liu
,
W.
,
Li
,
L.
, and
Kochhar
,
A.
,
1998
, “
A Method for Assessing Geometrical Errors in Layered Manufacturing. Part 1: Error Interaction and Transfer Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
14
(
9
), pp.
637
643
.
10.
Choi
,
S.
, and
Samavedam
,
S.
,
2002
, “
Modelling and Optimisation of Rapid Prototyping
,”
Comput. Ind.
,
47
(
1
), pp.
39
53
.
11.
Clijsters
,
S.
,
Craeghs
,
T.
, and
Kruth
,
J.
,
2012
, “
A Priori Process Parameter Adjustment for SLM Process Optimization
,”
Innovative Developments on Virtual and Physical Prototyping
, CRC Press, Boca Raton, FL, pp.
553
560
.
12.
Majhi
,
J.
,
Janardan
,
R.
, and
Smid
,
M.
,
1999
, “
On Some Geometric Optimization Problems in Layered Manufacturing
,”
Comput. Geom.
,
12
(
3
), pp.
219
239
.
13.
Cloots
,
M.
,
Spierings
,
A.
, and
Wegener
,
K.
,
2013
, “
Assessing New Support Minimizing Strategies for the Additive Manufacturing Technology SLM
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 12–14, pp.
12
13.
https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-50-Cloots.pdf
14.
Vaidya
,
R.
, and
Anand
,
S.
,
2016
, “
Optimum Support Structure Generation for Additive Manufacturing Using Unit Cell Structures and Support Removal Constraint
,”
Procedia Manuf.
,
5
, pp.
1043
1059
.
15.
Hussein
,
A.
,
Hao
,
L.
, and
Yan
,
C.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
.
16.
Zeng
,
K.
,
2015
, “
Optimization of Support Structures for Selective Laser Melting
,”
Doctoral dissertation
, University of Louisville, Louisville, KY.https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=3250&context=etd
17.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput.-Aided Des.
,
30
(
5
), pp.
343
356
.
18.
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Optimization of Layered Manufacturing Process for Reducing Form Errors With Minimal Support Structures
,”
J. Manuf. Syst.
,
36
, pp.
231
243
.
19.
Delfs
,
P.
,
T¨ ows
,
M.
, and
Schmid
,
H.
,
2016
, “
Optimized Build Orientation of Additive Manufactured Parts for Improved Surface Quality and Build Time
,”
Addit. Manuf.
,
12
, pp.
314
320
.
20.
Canellidis
,
V.
,
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Genetic-Algorithm-Based Multi-Objective Optimization of the Build Orientation in Stereolithography
,”
Int. J. Adv. Manuf. Technol.
,
45
(
7–8
), pp.
714
730
.
21.
Pohl
,
H.
,
Simchi
,
A.
, and
Issa
,
M.
,
2001
, “
Thermal Stresses in Direct Metal Laser Sintering
,”
12th Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 6–8, pp. 366–372.https://sffsymposium.engr.utexas.edu/Manuscripts/2001/2001-41-Pohl.pdf
22.
Ning
,
Y.
,
Wong
,
Y.
, and
Fuh
,
J.
,
2005
, “
Effect and Control of Hatch Length on Material Properties in the Direct Metal Laser Sintering Process
,”
Proc. Inst. Mech. Eng., Part B
,
219
(
1
), pp.
15
25
.
23.
Roberts
,
I. A.
,
2012
, “
Investigation of Residual Stresses in the Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Ph.D. dissertation
, University of Wolverhampton, Wolverhampton, UK.http://wlv.openrepository.com/wlv/handle/2436/254913
24.
Wang
,
X.
, and
Kruth
,
J.
,
2000
, “
A Simulation Model for Direct Selective Laser Sintering of Metal Powders
,”
Computational Techniques for Materials, Composites and Composite Structures
, Civil-Comp Press, Edinburgh, UK, pp.
57
71
.
25.
Wang
,
X.
,
Laoui
,
T.
, and
Bonse
,
J.
,
2002
, “
Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation
,”
Int. J. Adv. Manuf. Technol.
,
19
(
5
), pp.
351
357
.
26.
Matsumoto
,
M.
,
Shiomi
,
M.
, and
Osakada
,
K.
,
2002
, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
61
67
.
27.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.
28.
Paul
,
R.
, and
Anand
,
S.
,
2013
, “
Material Shrinkage Modeling and Form Error Prediction in Additive Manufacturing Processes
,” 41st North American Manufacturing Research Conference (NAMRC), Madison, WI, June 10–14, pp. 515–526.
29.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
30.
Tong
,
K.
,
Lehtihet
,
E. A.
, and
Joshi
,
S.
,
2004
, “
Software Compensation of Rapid Prototyping Machines
,”
Precis. Eng.
,
28
(
3
), pp.
280
292
.
31.
Tong
,
K.
,
Joshi
,
S.
, and
Amine Lehtihet
,
E.
,
2008
, “
Error Compensation for Fused Deposition Modeling (FDM) Machine by Correcting Slice Files
,”
Rapid Prototyping J.
,
14
(
1
), pp.
4
14
.
32.
Raghunath
,
N.
, and
Pandey
,
P. M.
,
2007
, “
Improving Accuracy Through Shrinkage Modelling by Using Taguchi Method in Selective Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
985
995
.
33.
Huang
,
Q.
,
Nouri
,
H.
, and
Xu
,
K.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
34.
Huang
,
Q.
,
Zhang
,
J.
, and
Sabbaghi
,
A.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
.
35.
Wang
,
R.
,
Wang
,
L.
, and
Zhao
,
L.
,
2007
, “
Influence of Process Parameters on Part Shrinkage in SLS
,”
Int. J. Adv. Manuf. Technol.
,
33
(
5–6
), pp.
498
504
.
36.
Senthilkumaran
,
K.
,
Pandey
,
P. M.
, and
Rao
,
P.
,
2009
, “
New Model for Shrinkage Compensation in Selective Laser Sintering
,”
Virtual Phys. Prototyping
,
4
(
2
), pp.
49
62
.
37.
Chowdhury
,
S.
, and
Anand
,
S.
,
2016
, “
Artificial Neural Network Based Geometric Compensation for Thermal Deformation in Additive Manufacturing Processes
,”
ASME
Paper No. MSEC2016-8784.
38.
Peng
,
L.
,
Shengqin
,
J.
, and
Xiaoyan
,
Z.
,
2007
, “
Direct Laser Fabrication of Thin-Walled Metal Parts Under Open-Loop Control
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
996
1002
.
39.
McConnell
,
S.
,
2016
, “
Prosthetic Hip Implant
,” GrabCAD, Cambridge, MA, accessed Nov. 10, 2017, https://grabcad.com/library/prosthetic-hip-implant-1
40.
Arni
,
R.
, and
Gupta
,
S.
,
2001
, “
Manufacturability Analysis of Flatness Tolerances in Solid Freeform Fabrication
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
148
156
.
41.
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
Optimal Part Orientation in Rapid Manufacturing Process for Achieving Geometric Tolerances
,”
J. Manuf. Syst.
,
30
(
4
), pp.
214
222
.
42.
The MathWorks, 2015, “
MATLAB GlobalSearch and MultiStart Toolbox
,” The MathWorks, Inc., Natick, MA.
43.
The MathWorks
, 2015, “
MATLAB Fmincon Algorithm
,” The MathWorks, Inc., Natick, MA.
44.
Chowdhury, S.
, 2016, “
Artificial Neural Network Based Geometric Compensation for Thermal Deformation in Additive Manufacturing Processes
,”
M.S. thesis
, University of Cincinnati, Cincinnati, OH.https://etd.ohiolink.edu/!etd.send_file?accession=ucin147982071583238&disposition=inline
45.
ANSYS
,
2009
, “
Element Birth and Death
,”
Advanced Analysis Techniques Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
46.
McCulloch
,
W. S.
, and
Pitts
,
W.
,
1943
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biophys.
,
5
(
4
), pp.
115
133
.
47.
Werbos
,
P.
,
1974
, “
Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
,” Ph.D. dissertation, Harvard University, Cambridge, UK.
48.
Arfken
,
G.
,
1985
, “
The Method of Steepest Descents
,”
Math. Methods Phys.
,
3
, pp.
428
436
.
49.
The MathWorks
, 2015, “
MATLAB R2015a and Neural Network Toolbox
,” The MathWorks, Inc., Natick, MA.
50.
Yu
,
H.
, and
Wilamowski
,
B. M.
,
2011
, “
Levenberg–Marquardt Training
,”
Industrial Electronics Handbook
, Vol. 5, CRC Press, Boca Raton, FL, pp. 1–15.
51.
Fletcher
,
R.
,
2013
,
Practical Methods of Optimization
,
Wiley
, Singapore.
52.
The MathWorks
, 2014, “
MATLAB Stlwrite
,” The MathWorks, Inc., Natick, MA.
53.
ISTI-CNR
, 2015, “
MeshLab
,” Visual Computing Labs, Pisa, Italy.
54.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
Method for Registration of 3-D Shapes
,”
Proc. SPIE
,
1611
, pp.
586
606
.
You do not currently have access to this content.