This paper presents a new dynamic modeling approach for spindle bearing system supported by both angular contact ball bearing (ACBB) and floating displacement bearing (FDB). First, a dynamic model of FDB is developed based on the discrete element method with each bearing component having six degrees-of-freedom (DOFs). Based on the developed FDB dynamic model and Gupta ACBB dynamic model, a fully coupled dynamic model of the spindle bearing system combined both ACBBs, and FDB is developed. In the proposed spindle bearing system model, the spindle shaft is modeled using finite element (FE) method based on the Timoshenko beam theory with the consideration of centrifugal force and gyroscopic moment. The coupling restriction between the dynamic bearing models and the FE spindle shaft model are the restoring forces and moments that are transmitted to the shaft by the bearings and the dynamic vibration response shared by both the bearing inner races and the corresponding nodes of the shaft where bearings are installed. A Fortran language-based program has been developed for the spindle bearing system with the dynamic bearing models solved using the Runge–Kutta–Fehlberg integration method and FE shaft model solved by Newmark-β method. Based on the developed model, the effect of the FDB radial clearance, system preload, and spindle rotating speed on the system dynamics, and the effect of the FDB radial clearance on the system unbalanced response have been investigated.

References

References
1.
Abele
,
E.
,
Altintas
,
Y.
, and
Brecher
,
C.
,
2010
, “
Machine Tool Spindle Units
,”
CIRP Ann.-Manuf. Technol.
,
59
(
2
), pp.
781
802
.
2.
Cao
,
H.
,
Zhang
,
X.
, and
Chen
,
X.
,
2017
, “
The Concept and Progress of Intelligent Spindles: A Review
,”
Int. J. Mach. Tools Manuf.
,
112
, pp.
21
52
.
3.
FEMCO, 2017, “
Floating Displacement Bearings
,” Femco Limited, Wolverhampton, UK, accessed Dec. 18, 2017, http://www.femcoprecisionbearings.co.uk/category/floating-displacement/
4.
Jones
,
A.
,
1960
, “
A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
2
), pp.
309
320
.
5.
de Mul
,
J. M.
,
Vree
,
J. M.
, and
Maas
,
D. A.
,
1989
, “
Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction—Part I: General Theory and Application to Ball Bearings
,”
ASME J. Tribol.
,
111
(
1
), pp.
142
148
.
6.
Harris
,
T.
, and
Mindel
,
M.
,
1973
, “
Rolling Element Bearing Dynamics
,”
Wear
,
23
(
3
), pp.
311
337
.
7.
Gupta
,
P. K.
,
2011
, “
Current Status of and Future Innovations in Rolling Bearing Modeling
,”
Tribol. Trans.
,
54
(
3
), pp.
394
403
.
8.
Cao
,
H.
,
Niu
,
L.
,
Xi
,
S.
, and
Chen
,
X.
,
2018
, “
Mechanical Model Development of Rolling Bearing-Rotor Systems: A Review
,”
Mech. Syst. Signal Process.
,
102
, pp.
37
58
.
9.
Alfares
,
M.
, and
Elsharkawy
,
A.
,
2000
, “
Effect of Grinding Forces on the Vibration of Grinding Machine Spindle System
,”
Int. J. Mach. Tools Manuf.
,
40
(
14
), pp.
2003
2030
.
10.
Alfares
,
M. A.
, and
Elsharkawy
,
A. A.
,
2003
, “
Effects of Axial Preloading of Angular Contact Ball Bearings on the Dynamics of a Grinding Machine Spindle System
,”
J. Mater. Process. Technol.
,
136
(
1
), pp.
48
59
.
11.
Aini
,
R.
,
Rahnejat
,
H.
, and
Gohar
,
R.
,
1990
, “
A Five Degrees of Freedom Analysis of Vibrations in Precision Spindles
,”
Int. J. Mach. Tools Manuf.
,
30
(
1
), pp.
1
18
.
12.
Karacay
,
T.
, and
Akturk
,
N.
,
2008
, “
Vibrations of a Grinding Spindle Supported by Angular Contact Ball Bearings
,”
Proc. Inst. Mech. Eng., Part K
,
222
(
1
), pp.
61
75
.
13.
Chen
,
J.-S.
, and
Hwang
,
Y.-W.
,
2006
, “
Centrifugal Force Induced Dynamics of a Motorized High-Speed Spindle
,”
Int. J. Adv. Manuf. Technol.
,
30
(
1–2
), pp.
10
19
.
14.
Gao
,
S.-H.
,
Long
,
X.-H.
, and
Meng
,
G.
,
2008
, “
Nonlinear Response and Nonsmooth Bifurcations of an Unbalanced Machine-Tool Spindle-Bearing System
,”
Nonlinear Dyn.
,
54
(
4
), pp.
365
377
.
15.
Liu
,
J.
, and
Shao
,
Y.
,
2017
, “
Dynamic Modeling for Rigid Rotor Bearing Systems With a Localized Defect Considering Additional Deformations at the Sharp Edges
,”
J. Sound Vib.
,
398
, pp.
84
102
.
16.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2012
, “
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
Mech. Mach. Theory
,
56
, pp.
156
169
.
17.
El-Saeidy
,
F.
,
2011
, “
Time-Varying Total Stiffness Matrix of a Rigid Machine Spindle-Angular Contact Ball Bearings Assembly: Theory and Analytical/Experimental Verifications
,”
Shock Vib.
,
18
(
5
), pp.
641
670
.
18.
Cao
,
Y.
, and
Altintas
,
Y.
,
2004
, “
A General Method for the Modeling of Spindle-Bearing Systems
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1089
1104
.
19.
Cao
,
Y.
, and
Altintas
,
Y.
,
2007
, “
Modeling of Spindle-Bearing and Machine Tool Systems for Virtual Simulation of Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1342
1350
.
20.
Cao
,
H.
,
Holkup
,
T.
, and
Altintas
,
Y.
,
2011
, “
A Comparative Study on the Dynamics of High Speed Spindles With Respect to Different Preload Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
871
883
.
21.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
.
22.
Jorgensen
,
B. R.
, and
Shin
,
Y. C.
,
1998
, “
Dynamics of Spindle-Bearing Systems at High Speeds Including Cutting Load Effects
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
387
394
.
23.
Li
,
H.
, and
Shin
,
Y. C.
,
2004
, “
Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles—Part 1: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
148
158
.
24.
Li
,
H.
, and
Shin
,
Y. C.
,
2004
, “
Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles—Part 2: Solution Procedure and Validations
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
159
168
.
25.
Li
,
H.
, and
Shin
,
Y. C.
,
2004
, “
Analysis of Bearing Configuration Effects on High Speed Spindles Using an Integrated Dynamic Thermo-Mechanical Spindle Model
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
347
364
.
26.
Li
,
H.
, and
Shin
,
Y. C.
,
2009
, “
Integration of Thermo-Dynamic Spindle and Machining Simulation Models for a Digital Machining System
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7–8
), pp.
648
661
.
27.
Liew
,
A.
,
Feng
,
N.
, and
Hahn
,
E. J.
,
2002
, “
Transient Rotordynamic Modeling of Rolling Element Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
984
991
.
28.
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2005
, “Modelling Approach for a High Speed Machine Tool Spindle-Bearing System,”
ASME
Paper No. DETC2005-84681.
29.
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Model-Based Chatter Stability Prediction for High-Speed Spindles
,”
Int. J. Mach. Tool Manuf.
,
47
(
7–8
), pp.
1176
1186
.
30.
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Dynamic Analyses and Design Optimization of High-Speed Spindle-Bearing System
,”
Advances in Integrated Design and Manufacturing in Mechanical Engineering II
,
Springer
, Dordrecht, The Netherlands, pp.
505
518
.
31.
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Stability-Based Spindle Design Optimization
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
407
415
.
32.
Ertürk
,
A.
,
Özgüven
,
H.
, and
Budak
,
E.
,
2006
, “
Analytical Modeling of Spindle–Tool Dynamics on Machine Tools Using Timoshenko Beam Model and Receptance Coupling for the Prediction of Tool Point FRF
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
1901
1912
.
33.
Jiang
,
S.
, and
Zheng
,
S.
,
2010
, “
A Modeling Approach for Analysis and Improvement of Spindle-Drawbar-Bearing Assembly Dynamics
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
131
142
.
34.
Brouwer
,
M. D.
,
Sadeghi
,
F.
,
Ashtekar
,
A.
,
Archer
,
J.
, and
Lancaster
,
C.
,
2015
, “
Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling
,”
Tribol. Trans.
,
58
(
2
), pp.
300
315
.
35.
Li
,
Y.
,
Cao
,
H.
,
Niu
,
L.
, and
Jin
,
X.
,
2015
, “
A General Method for the Dynamic Modeling of Ball Bearing–Rotor Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021016
.
36.
Cao
,
H.
,
Li
,
Y.
, and
Chen
,
X.
,
2016
, “
A New Dynamic Model of Ball-Bearing Rotor Systems Based on Rigid Body Element
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071007
.
37.
Gupta
,
P. K.
,
2012
,
Advanced Dynamics of Rolling Elements
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
38.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.
39.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2015
, “
A Systematic Study of Ball Passing Frequencies Based on Dynamic Modeling of Rolling Ball Bearings With Localized Surface Defects
,”
J. Sound Vib.
,
357
, pp.
207
232
.
40.
Schaffler Group Industrial,
2008
,
FAG Ultra-Precision Bearing Handbook AC 41 130/7 ChA
,
Schaffler Group Industrial
,
Nuremberg, Germany
.
41.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Essential Concepts of Bearing Technology
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.