The objectives of this work are to demonstrate the use of multiscale curvature tensor analysis for characterizing surfaces of stainless steel created by micro-electrical discharge machining (μEDM), and to study the strengths of the correlations between discharge energies and resulting surface curvatures (i.e., principal, Gaussian, or mean curvatures) and how they change with scale. Surfaces were created by μEDM techniques using energies from 18 nJ to 16,500 nJ and measured by confocal microscope. The curvature tensor T is calculated using three proximate unit vectors normal to the surface. The multiscale effect is achieved by changing the size of the sampling interval for the estimation of the normals. Normals are estimated from regular meshes by applying a covariance matrix method. Strong correlations (R2 > 0.9) are observed between calculated principal maximal and minimal as well as mean and Gaussian curvatures and discharge energies. This method allows detailed analysis of the nature of surface topographies and suggests that different formation processes governed the creation of surfaces created by higher energies.

References

References
1.
Hyde
,
J. M.
,
Cadet
,
L.
,
Montgomery
,
J.
, and
Brown
,
C. A.
,
2014
, “
Multi-Scale Areal Topographic Analysis of Surfaces Created by Micro-EDM and Functional Correlations With Discharge Energy
,”
Surf. Topogr. Metrol. Prop.
,
2
(
4
), p.
045001
.
2.
Cade
,
R.
,
1985
, “
Charge Density, Vertices and High Curvature in Two-Dimensional Electrostatics
,”
J. Electrostat.
,
17
(
2
), pp.
125
136
.
3.
Hadjesfandiari
,
A. R.
,
2016
, “
Size-Dependent Thermoelasticity
,”
Latin Am. J. Solids Struct.
,
11
(
9
), pp.
1679
1708
.
4.
Darrall
,
B. T.
,
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2015
, “
Size-Dependent Piezoelectricity: A 2D Finite Element Formulation for Electric Field-Mean Curvature Coupling in Dielectrics
,”
Eur. J. Mech. A/Solids
,
49
, pp.
308
320
.
5.
Tamagawa
,
H.
,
Nogata
,
F.
, and
Sasaki
,
M.
,
2007
, “
Charge Quantity as a Sole Factor Quantitatively Governing Curvature of Selemion
,”
Sens. Actuators B
,
124
(
1
), pp.
6
11
.
6.
Kumaran
,
V.
,
2000
, “
Instabilities Due to Charge-Density-Curvature Coupling in Charged Membranes
,”
Phys. Rev. Lett.
,
85
(
23
), pp.
4996
4999
.
7.
Winterhalter
,
M.
, and
Helfrich
,
W.
,
1988
, “
Effect of Surface Charge on the Curvature Elasticity of Membranes
,”
J. Phys. Chem.
,
92
(
24
), pp.
6865
6867
.
8.
Vitelli
,
V.
, and
Turner
,
A. M.
,
2004
, “
Anomalous Coupling Between Topological Defects and Curvature
,”
Phys. Rev. Lett.
,
93
(
21
), p.
215301
.
9.
Ferri
,
C.
,
Ivanov
,
A.
, and
Petrelli
,
A.
,
2008
, “
Electrical Measurements in μ-EDM
,”
J. Micromech. Microeng.
,
18
(
8
), p.
085007
.
10.
Singha
,
A.
, and
Ghosh
,
A.
,
1999
, “
A Thermo-Electric Model of Material Removal During Electric Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
39
(
4
), pp.
669
682
.
11.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K. P.
, and
Schumacher
,
B. M.
,
2005
, “
Advancing EDM Through Fundamental Insight Into the Process
,”
CIRP Ann.– Manuf. Technol.
,
54
(
2
), pp.
64
87
.
12.
Rajurkar
,
P.
,
Levy
,
G.
,
Malshe
,
A.
,
Sundaram
,
M. M.
,
McGeough
,
J.
,
Hu
,
X.
,
Resnick
,
R.
, and
DeSilva
,
A.
,
2006
, “
Micro and Nano Machining by Electro-Physical and Chemical Processes
,”
CIRP Ann. Manuf. Technol.
,
55
(
2
), pp.
643
666
.
13.
Yu
,
Z. Y.
,
Rajurkar
,
K. P.
, and
Narasimhan
,
J.
,
2003
, “
Effect of Machining Parameters on Machining Performance of Micro EDM and Surface Integrity
,”
18th Annual Meeting of American Society for Precision Engineering
, Portland, OR, Oct. 26-31, Paper No.
1330
.http://www.aspe.net/publications/Annual_2003/PDF/5PRMACH/1330.PDF
14.
Klocke
,
F.
,
Lung
,
D.
,
Antonoglou
,
G.
, and
Thomaidis
,
D.
,
2004
, “
The Effects of Powder Suspended Dielectrics on the Thermal Influenced Zone by Electrodischarge Machining With Small Discharge Energies
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
191
197
.
15.
Masuzawa
,
T.
,
Yamaguchi
,
M.
, and
Fujino
,
M.
,
2005
, “
Surface Finishing of Micropins Produced by WEDG
,”
Ann. CIRP
,
54
(
1
), pp.
171
174
.
16.
Guu
,
Y. H.
,
2005
, “
AFM Surface Imaging of AISI D2 Tool Steel Machined by the EDM Process
,”
Appl. Surf. Sci.
,
242
(
3–4
), pp.
245
250
.
17.
Klink
,
A.
,
Holsten
,
M.
, and
Hensgen
,
L.
,
2017
, “
Crater Morphology Evaluation of Contemporary Advanced EDM Generator Technology
,”
CIRP Ann. Manuf. Technol.
,
66
(
1
), pp.
197
200
.
18.
ASME
,
2009
, “
Surface Texture (Surface Roughness, Waviness and Lay)
,” American Society of Mechanical Engineers, New York, Standard No.
ASME B46.1-2009
.http://files.asme.org/Catalog/Codes/PrintBook/28833.pdf
19.
Berglund
,
J.
,
Brown
,
C. A.
,
Rosen
,
B.-G.
, and
Bay
,
N.
,
2010
, “
Milled Die Steel Surface Roughness Correlation With Steel Sheet Friction
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
577
580
.
20.
Cantor
,
G. J.
, and
Brown
,
C. A.
,
2009
, “
Scale-Based Correlations of Relative Areas With Fracture of Chocolate
,”
Wear
,
266
(
5–6
), pp.
609
612
.
21.
Brown
,
C. A.
, and
Siegmann
,
S.
,
2001
, “
Fundamental Scales of Adhesion and Area-Scale Fractal Analysis
,”
Int. J. Mach. Tools Manuf.
,
41
(
13–14
), pp.
1927
1933
.
22.
Vulliez
,
M.
,
Gleason
,
M. A.
,
Souto-Lebel
,
A.
,
Quinsat
,
Y.
,
Lartigue
,
C.
,
Kordell
,
S. P.
,
Lemoine
,
A. C.
, and
Brown
,
C. A.
,
2014
, “
Multi-Scale Curvature Analysis and Correlations With the Fatigue Limit on Steel Surfaces After Milling
,”
Procedia CIRP
,
13
, pp.
308
313
.
23.
Bartkowiak
,
T.
,
Lehner
,
J. T.
,
Hyde
,
J.
,
Wang
,
Z.
,
Pedersen
,
D. B.
,
Hansen
,
H. N.
, and
Brown
,
C. A.
,
2015
, “
Multi-Scale Areal Curvature Analysis of Fused Deposition Surfaces
,”
ASPE Spring Topical Meeting on Achieving Precision Tolerances in Additive Manufacturing
, Raleigh, NC, Apr. 26–29, pp.
77
82
.https://www.researchgate.net/publication/281586139_Multi-scale_areal_curvature_analysis_of_fused_deposition_surfaces
24.
Hulik
,
R.
,
Spanel
,
M.
,
Smrz
,
P.
, and
Materna
,
Z.
,
2014
, “
Continuous Plane Detection in Point-Cloud Data Based on 3D Hough Transform
,”
J. Visual Commun. Image Representation
,
25
(
1
), pp.
86
97
.
25.
Theisel
,
H.
,
Rossi
,
C.
,
Zayer
,
R.
, and
Seidel
,
H.-P.
,
2004
, “
Normal Based Estimation of the Curvature Tensor for Triangular Meshes
,” 12th Pacific Conference on Computer Graphics and Applications (
PCCGA
), Seoul, South Korea, Oct. 6–8, pp.
288
297
.
26.
Goldfeather
,
J.
, and
Interrante
,
V.
,
2004
, “
A Novel Cubic-Order Algorithm for Approximating Principal Directions Vectors
,”
ACM Trans. Graphics
,
23
(
1
), pp.
45
63
.
27.
Welch
,
W.
, and
Witkin
,
A.
,
1994
, “
Free-Form Shape Design Using Triangulated Surfaces
,”
Proceedings of SIGGRAPH’'94
,
A.
Glassner
, ed.,
ACM Press
,
Orlando, FL
, pp.
247
256
.
28.
LeGoïc
,
G.
,
Brown
,
C. A.
,
Favreliere
,
H.
,
Samper
,
S.
, and
Formosa
,
F.
,
2013
, “
Outlier Filtering: A New Method for Improving the Quality of Surface Measurements
,”
Meas. Sci. Technol.
,
24
(
1
), p.
015001
.
You do not currently have access to this content.