A general calibration method of cutter runout and specific cutting force coefficients (SCFCs) for flat-end cutter is proposed in this paper, and a high accuracy of cutting force prediction during peripheral milling is established. In the paper, the cutter runout, the bottom-edge cutting effect, and the actual feedrate with limitation during large tool path curvature are concerned comprehensively. First, based on the trochoid motion, a tooth trajectory model is built up and an analytical instantaneous uncut chip thickness (IUCT) model is put forward for describing the cutter/workpiece engagement (CWE). Second, a noncontact identification method for cutter runout including offset and inclination is given, which constructs an objective function by using the cutting radius relative variation between adjacent teeth, and identifies through a numerical optimization method. Thirdly, with consideration of bottom-edge cutting effect, the paper details a three-step calibration procedure for SCFCs based on an enhanced thin-plate milling experiment. Finally, a series of milling tests are performed to verify the effectiveness of the proposed method. The results show that the approach is suitable for both constant and nonconstant pitch cutter, and the generalization has been proved. Moreover, the paper points out that the cutter runout has a strong spindle speed-dependent effect, the milling force in cutter axis direction exists a switch-direction phenomenon, and the actual feedrate will be limited by large tool path curvature. All of them should be considered for obtaining an accurate milling force prediction.

References

References
1.
Duan
,
X. Y.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Zhu
,
Z. R.
,
Huang
,
K.
, and
Li
,
B.
,
2016
, “
Estimation of Cutter Deflection Based on Study of Cutting Force and Static Flexibility
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041001
.
2.
Desai
,
K. A.
, and
Rao
,
P. V. M.
,
2012
, “
On Cutter Deflection Surface Errors in Peripheral Milling
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2443
2454
.
3.
Yang
,
Y.
,
Zhang
,
W. H.
,
Ma
,
Y. C.
, and
Wan
,
M.
,
2016
, “
Chatter Prediction for the Peripheral Milling of Thin-Walled Workpieces With Curved Surfaces
,”
Int. J. Mach. Tool Manuf.
,
109
, pp.
36
48
.
4.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Ann. Manuf. Technol.
,
63
(
2
), pp.
585
605
.
5.
Ko
,
J. H.
,
Yun
,
W. S.
,
Cho
,
D. W.
, and
Ehmann
,
K. F.
,
2002
, “
Development of a Virtual Machining System—Part 1: Approximation of the Size Effect for Cutting Force Prediction
,”
Int. J. Mach. Tool Manuf.
,
42
(
15
), pp.
1595
1605
.
6.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
.
7.
Zhang
,
X.
,
Zhang
,
J.
,
Zheng
,
X.
,
Pang
,
B.
, and
Zhao
,
W.
,
2017
, “
Tool Orientation Optimization of 5-Axis Ball-End Milling Based on an Accurate Cutter/Workpiece Engagement Model
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp. 106–116.
8.
Martellotti
,
M. E.
,
1941
, “
An Analysis of the Milling Process
,”
Trans. ASME
,
63
(8), pp.
677
700
.http://www.meccanicamente.org/varie_corsi/archivio/martellotti_1941.pdf
9.
Martellotti
,
M. E.
,
1945
, “
An Analysis of the Milling Process—Part 2: Down Milling
,”
Trans. ASME
,
67
, pp.
233
251
.
10.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1986
, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
,
108
(
4
), pp.
269
279
.
11.
Wang
,
J. J.
, and
Liang
,
S. Y.
,
1996
, “
Chip Load Kinematics in Milling With Radial Cutter Runout
,”
ASME J. Eng. Ind.
,
118
(
1
), pp.
111
116
.
12.
Zhang
,
L.
, and
Zheng
,
L.
,
2005
, “
Prediction of Cutting Forces in End Milling of Pockets
,”
Int. J. Adv. Manuf. Technol.
,
25
(
3–4
), pp.
281
287
.
13.
Wei
,
Z. C.
,
Wang
,
M. J.
,
Ma
,
R. G.
, and
Wang
,
L.
,
2010
, “
Modeling of Process Geometry in Peripheral Milling of Curved Surfaces
,”
J. Mater. Process Technol.
,
210
(
5
), pp.
799
806
.
14.
Desai
,
K. A.
, and
Rao
,
P. V. M.
,
2008
, “
On Cutter Deflection Surface Errors in Peripheral Milling
,”
Int. J. Mach. Tool Manuf.
,
48
(2), pp.
249
259
.
15.
Han
,
X.
, and
Tang
,
L. M.
,
2015
, “
Precise Prediction of Forces in Milling Circular Corners
,”
Int. J. Mach. Tool Manuf.
,
88
, pp.
184
193
.
16.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2014
, “
Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041021
.
17.
Sun
,
Y.
, and
Guo
,
Q.
,
2012
, “
Analytical Modeling and Simulation of the Envelope Surface in Five-Axis Flank Milling With Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021010
.
18.
Desai
,
K. A.
,
Agarwal
,
P. K.
, and
Rao
,
P. V. M.
,
2009
, “
Process Geometry Modeling With Cutter Runout for Milling of Curved Surfaces
,”
Int. J. Mach. Tool Manuf.
,
49
(12–13), pp.
1015
1028
.
19.
Yang
,
Y.
,
Zhang
,
W. H.
, and
Wan
,
M.
,
2011
, “
Effect of Cutter Runout on Process Geometry and Forces in Peripheral Milling of Curved Surfaces With Variable Curvature
,”
Int. J. Mach. Tool Manuf.
,
51
(5), pp.
420
427
.
20.
Dang
,
J. W.
,
Zhang
,
W. H.
,
Yang
,
Y.
, and
Wan
,
M.
,
2010
, “
Cutting Force Modeling for Flat End Milling Including Bottom Edge Cutting Effect
,”
Int. J. Mach. Tool Manuf.
,
50
(11), pp.
986
997
.
21.
Wan
,
M.
,
Zhang
,
W. H.
, and
Yang
,
Y.
,
2011
, “
Phase Width Analysis of Cutting Forces Considering Bottom Edge Cutting and Cutter Runout Calibration in Flat End Milling of Titanium Alloy
,”
J. Mater. Process. Technol.
,
211
(
11
), pp.
1852
1863
.
22.
Wan
,
M.
,
Lu
,
M. S.
,
Zhang
,
W. H.
, and
Yang
,
Y.
,
2012
, “
A New Ternary Mechanism Model for the Prediction of Cutting Forces in Flat End Milling
,”
Int. J. Mach. Tool Manuf.
,
57
, pp.
34
45
.
23.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2016
, “
Mechanistic Modeling of Five-Axis Machining With a Flat End Mill Considering Bottom Edge Cutting Effect
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111012
.
24.
Wang
,
J. J. J.
, and
Zheng
,
C. M.
,
2003
, “
Identification of Cutter Offset in End Milling Without a Prior Knowledge of Cutting Coefficients
,”
Int. J. Mach. Tool Manuf.
,
43
(
7
), pp.
687
697
.
25.
Wan
,
M.
,
Zhang
,
W. H.
,
Qin
,
G. H.
, and
Tan
,
G.
,
2007
, “
Efficient Calibration of Instantaneous Cutting Force Coefficients and Runout Parameters for General End Mills
,”
Int. J. Mach. Tool Manuf.
,
47
(
11
), pp.
1767
1776
.
26.
Ko
,
J. H.
, and
Cho
,
D. W.
,
2005
, “
Determination of Cutting-Condition-Independent Coefficients and Runout Parameters in Ball-End Milling
,”
Int. J. Adv. Manuf. Technol.
,
26
(
11–12
), pp.
1211
1221
.
27.
Wan
,
M.
,
Zhang
,
W. H.
,
Qin
,
G. H.
, and
Wang
,
Z. P.
,
2008
, “
Consistency Study on Three Cutting Force Modeling Methods for Peripheral Milling
,”
Proc. Inst. Mech. Eng. B
,
222
(
6
), pp.
665
676
.
28.
Zhang
,
X.
,
Zhang
,
J.
, and
Zhao
,
W. H.
,
2016
, “
A New Method for Cutting Force Prediction in Peripheral Milling of Complex Curved Surface
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
117
128
.
29.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
30.
Wang
,
J. J. J.
, and
Zheng
,
C. M.
,
2002
, “
Identification of Shearing and Ploughing Cutting Constants From Average Forces in Ball-End Milling
,”
Int. J. Mach. Tool Manuf.
,
42
(
6
), pp.
695
705
.
31.
Yoon
,
M. C.
, and
Kim
,
Y. G.
,
2004
, “
Cutting Dynamic Force Modelling of End Milling Operation
,”
J. Mater. Process Technol.
,
155–156
, pp.
1383
1389
.
32.
Gradišek
,
J.
,
Kalveram
,
M.
, and
Weinert
,
K.
,
2004
, “
Mechanistic Identification of Specific Force Coefficients for a General End Mill
,”
Int. J. Mach. Tool Manuf.
,
44
(
4
), pp.
401
414
.
33.
Wang
,
M. H.
,
Gao
,
L.
, and
Zheng
,
Y. H.
,
2014
, “
An Examination of the Fundamental Mechanics of Cutting Force Coefficients
,”
Int. J. Mach. Tool Manuf.
,
78
, pp.
1
7
.
34.
Gonzalo
,
O.
,
Beristain
,
J.
,
Jauregi
,
H.
, and
Sanz
,
C.
,
2010
, “
A Method for the Identification of the Specific Force Coefficients for Mechanistic Milling Simulation
,”
Int. J. Mach. Tool Manuf.
,
50
(
9
), pp.
765
774
.
35.
Edouard
,
R. L.
, and
Enrico
,
F.
,
2009
, “
Mechanistic Cutting Force Model Parameters Evaluation in Milling Taking Cutter Radial Runout Into Account
,”
Int. J. Adv. Manuf. Technol.
,
45
(1–2), pp.
8
15
.
36.
Shin
,
Y. C.
, and
Waters
,
A. J.
,
1997
, “
A New Procedure to Determine Instantaneous Cutting Force Coefficients for Machining Force Prediction
,”
Int. J. Mach. Tool Manuf.
,
37
(
9
), pp.
1337
1351
.
37.
Yun
,
W. S.
, and
Cho
,
D. W.
,
2001
, “
Accurate 3-D Cutting Force Prediction Using Cutting Condition Independent Coefficients in End Milling
,”
Int. J. Mach. Tool Manuf.
,
41
(
4
), pp.
463
478
.
38.
Feng
,
H. Y.
, and
Su
,
N.
,
2001
, “
A Mechanistic Cutting Force Model for 3D Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
23
29
.
39.
Wan
,
M.
,
Zhang
,
W. H.
,
Dang
,
J. W.
, and
Yang
,
Y.
,
2009
, “
New Procedures for Calibration of Instantaneous Cutting Force Coefficients and Cutter Runout Parameters in Peripheral Milling
,”
Int. J. Mach. Tool Manuf.
,
49
(
14
), pp.
1144
1151
.
40.
Wan
,
M.
,
Zhang
,
W. H.
,
Dang
,
J. W.
, and
Yang
,
Y.
,
2010
, “
A Novel Cutting Force Modeling Method for Cylindrical End Mill
,”
Appl. Math Model
,
34
(
3
), pp.
823
836
.
41.
Zhang
,
X.
,
Zhang
,
J.
,
Pang
,
B.
, and
Zhao
,
W. H.
,
2016
, “
An Accurate Prediction Method of Cutting Forces in 5-Axis Flank Milling of Sculptured Surface
,”
Int. J. Mach. Tool Manuf.
,
104
, pp.
26
36
.
42.
Zhang
,
X.
,
Zhang
,
J.
,
Zhang
,
W.
,
Li
,
J.
, and
Zhao
,
W.
,
2017
, “
A Non-Contact Calibration Method for Cutter Runout With Spindle Speed Dependent Effect and Analysis of Its Influence on Milling Process
,”
Precis. Eng.
, epub.
43.
Wan
,
M.
,
Wang
,
Y. T.
,
Zhang
,
W. H.
,
Yang
,
Y.
, and
Dang
,
J. W.
,
2011
, “
Prediction of Chatter Stability for Multiple-Delay Milling System Under Different Cutting Force Models
,”
Int. J. Mach. Tool Manuf.
,
51
(
4
), pp.
281
295
.
You do not currently have access to this content.