Single point incremental sheet forming (SPISF) technique is an emerging process for die less forming. It has wide applications in many industries viz. automobile and medical bone transplants. Among several key parameters, toolpath planning is one of the critical aspects of SPISF. Also, formability and geometric accuracy have been the two major limitations in SPISF. Spiral and constant incremental toolpaths and their variants have been investigated in detail by several researchers. Fractal-based toolpath planning is also an attempt to improve the process of SPISF. Formability is measured in terms of thickness distribution and maximum forming depth achieved. This paper investigates a fractal geometry-based incremental toolpath (FGBIT) strategy to form a square cup using incremental sheet forming (ISF). Fractal toolpath is a space-filling toolpath which is developed by the fractal geometry theory. A comparison-based study is conducted to observe the benefits of using FGBIT over traditional toolpaths (spiral and constant Z). Better formability, stress, and thickness distribution have been observed by adopting the proposed toolpath strategy. This toolpath strategy is new in its kind and has not been investigated in the metal forming domain. Experiments and simulations are conducted to validate the concept with reasonable accuracy.

References

References
1.
Young
,
D.
, and
Jeswiet
,
J.
,
2004
, “
Wall Thickness Variations in Single-Point Incremental Forming
,”
Proc. Inst. Mech. Eng., Part B
,
218
(
11
), pp.
1453
1459
.
2.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann. Manuf. Technol.
,
54
(
2
), pp.
88
114
.
3.
Jackson
,
K.
, and
Allwood
,
J.
,
2009
, “
The Mechanics of Incremental Sheet Forming
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1158
1174
.
4.
Leszak
,
E.
,
1967
, “
Apparatus and Process for Incremental Dieless Forming
,” U.S. Patent No.
US3342051 A
.https://www.google.com/patents/US3342051
5.
Mason
,
B.
,
1978
, “
Sheet Metal Forming for Small Batches
,” Bachelor thesis, University of Nottingham, Nottingham, UK.
6.
Matsubara
,
S.
,
1994
, “
Incremental Backward Bulge Forming of a Sheet Metal With a Hemispherical Head Tool-a Study of a Numerical Control Forming System II
,”
J. Jpn. Soc. Technol. Plast.
,
35
(406), pp.
1311
1311
.
7.
Allwood
,
J. M.
,
Shouler
,
D. R.
, and
Tekkaya
,
A. E.
,
2007
, “
The Increased Forming Limits of Incremental Sheet Forming Processes
,”
Key Engineering Materials
, Vol.
344
,
Trans Tech Publications
, Zürich, Switzerland, pp.
621
628
.
8.
Duflou
,
J. R.
,
Verbert
,
J.
,
Belkassem
,
B.
,
Gu
,
J.
,
Sol
,
H.
,
Henrard
,
C.
, and
Habraken
,
A. M.
,
2008
, “
Process Window Enhancement for Single Point Incremental Forming Through Multi-Step Toolpaths
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
253
256
.
9.
Liu
,
Z.
,
Li
,
Y.
, and
Meehan
,
P. A.
,
2013
, “
Vertical Wall Formation and Material Flow Control for Incremental Sheet Forming by Revisiting Multistage Deformation Path Strategies
,”
Mater. Manuf. Process
,
28
(
5
), pp.
562
571
.
10.
Malhotra
,
R.
,
Bhattacharya
,
A.
,
Kumar
,
A.
,
Reddy
,
N. V.
, and
Cao
,
J.
,
2011
, “
A New Methodology for Multi-Pass Single Point Incremental Forming With Mixed Toolpaths
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
323
326
.
11.
Kim
,
T. J.
, and
Yang
,
D. Y.
,
2000
, “
Improvement of Formability for the Incremental Sheet Metal Forming Process
,”
Int. J. Mech. Sci.
,
42
(
7
), pp.
1271
1286
.
12.
Lu
,
B.
,
Chen
,
J.
,
Ou
,
H.
, and
Cao
,
J.
,
2013
, “
Feature-Based Tool Path Generation Approach for Incremental Sheet Forming Process
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1221
1233
.
13.
Malhotra
,
R.
,
Reddy
,
N. V.
, and
Cao
,
J.
,
2010
, “
Automatic 3D Spiral Toolpath Generation for Single Point Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061003
.
14.
Skjoedt
,
M.
,
Hancock
,
M. H.
, and
Bay
,
N.
,
2007
, “
Creating Helical Tool Paths for Single Point Incremental Forming
,”
Key Engineering Materials
,
Trans Tech Publications
,
Zürich, Switzerland
, pp.
583
590
.
15.
Singh
,
A.
,
Nirala
,
H. K.
, and
Agrawal
,
A.
,
2016
, “
Investigations on Structural Thinning in Deformation Machining Stretching Mode
,”
AIP Conf. Proc.
,
1769
(
1
), p.
070017
.
16.
Rose
,
N. J.
,
2001
, “
Hilbert-Type Space-Filling Curves
,”
North Carolina State University
, Chicago, IL.http://www4.ncsu.edu/~njrose/pdfFiles/HilbertCurve.pdf
17.
Cutting
,
J. E.
, and
Garvin
,
J. J.
,
1987
, “
Fractal Curves and Complexity
,”
Atten. Percept. Psychophys.
,
42
(
4
), pp.
365
370
.
18.
Shaikh
,
S.
,
Kumar
,
N.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2016
, “
Hilbert Curve Based Toolpath for FDM Process
,”
CAD/CAM, Robotics and Factories of the Future
,
Springer
,
New Delhi, India
, pp.
751
759
.
19.
Kumar
,
G. S.
,
Pandithevan
,
P.
, and
Ambatti
,
A. R.
,
2009
, “
Fractal Raster Tool Paths for Layered Manufacturing of Porous Objects
,”
Virtual Phys. Prototyping
,
4
(
2
), pp.
91
104
.
20.
Mizugaki
,
Y.
,
Sakamoto
,
M.
, and
Sata
,
T.
,
1992
, “
Fractal Path Generation for a Metal-Mold Polishing Robot System and Its Evaluation by the Operability
,”
CIRP Ann. Manuf. Technol.
,
41
(
1
), pp.
531
534
.
21.
Cox
,
J. J.
,
Takezaki
,
Y.
,
Ferguson
,
H. R.
,
Kohkonen
,
K. E.
, and
Mulkay
,
E. L.
,
1994
, “
Space-Filling Curves in Tool-Path Applications
,”
Comput. Aided Des.
,
26
(
3
), pp.
215
224
.
22.
Mandelbrot
,
B. B.
, and
Pignoni
,
R.
,
1983
,
The Fractal Geometry of Nature
, Vol.
173
,
WH Freeman
,
New York
.
23.
Chen
,
C. C. A.
,
Juang
,
Y. S.
, and
Lin
,
W. Z.
,
2002
, “
Generation of Fractal Toolpaths for Irregular Shapes of Surface Finishing Areas
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
146
150
.
24.
Ventrella
,
J.
,
2012
,
Brain Filling Curves—A Fractal Bestiary
,
Lulu Press, Inc.
,
Raleigh, NC
.
25.
Lin
,
W.
,
Xu
,
P.
,
Li
,
B.
, and
Yang
,
X.
,
2014
, “
Path Planning of Mechanical Polishing Process for Freeform Surface With a Small Polishing Tool
,”
Rob. Biomimetics
,
1
(
1
), p.
24
.
26.
Henrard
,
C.
,
2009
, “
Numerical Simulations of the Single Point Incremental Forming Process
,”
Ph.D. dissertation
, The University of Liège, Liège, Belgium.http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-04182009-184505/unrestricted/PhD_Henrard_Full.pdf
27.
Nirala
,
H. K.
,
Jain
,
P. K.
,
Roy
,
J. J.
,
Samal
,
M. K.
, and
Tandon
,
P.
,
2017
, “
An Approach to Eliminate Stepped Features in Multistage Incremental Sheet Forming Process: Experimental and FEA Analysis
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
599
604
.
28.
DASSAULT SYSTÈMES,
2012
, “
Simulation of the Ballistic Perforation of Aluminum Plates With Abaqus/Explicit, Abaqus Technology Brief
,” DASSAULT SYSTÈMES, Waltham, MA.
29.
Hirt
,
G.
,
Ames
,
J.
, and
Bambach
,
M.
,
2005
, “
A New Forming Strategy to Realize Parts Designed for Deep‐Drawing by Incremental CNC Sheet Forming
,”
Steel Res. Int.
,
76
(
2–3
), pp.
160
166
.
30.
Hadoush
,
A.
, and
Van den Boogaard
,
A. H.
,
2008
, “
Time Reduction in Implicit Single Point Incremental Sheet Forming Simulation by Refinement-Derefinement
,”
Int. J. Mater. Form.
,
1
(Suppl. 1), pp.
1167
1170
.
31.
Petek
,
A.
,
Podgomik
,
B.
,
Kuzman
,
K.
,
Cekada
,
M.
,
Waldhauser
,
W.
, and
Vizintin
,
J.
,
2008
, “
The Analysis of Complex Tribological System of Single Point Incremental Sheet Metal Forming-SPIF
,”
Strojniski Vestn.
,
54
(
4
), pp.
266
273
.http://cat.inist.fr/?aModele=afficheN&cpsidt=20397402
32.
Corbett
,
B. M.
,
2006
, “
Numerical Simulations of Target Hole Diameters for Hypervelocity Impacts Into Elevated and Room Temperature Bumpers
,”
Int. J. Impact Eng.
,
33
(
1
), pp.
431
440
.
33.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
34.
Schwer
,
L. E.
, and
Windsor
,
C. A.
,
2009
, “
Aluminum Plate Perforation: A Comparative Case Study Using Lagrange With Erosion, Multi-Material ALE, and Smooth Particle Hydrodynamics
,”
7th European LS-DYNA Conference
, Salzburg, Austria, May 14–15.http://www.dynalook.com/european-conf-2009/J-I-01.pdf
35.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
,
1976
, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States
,”
J. Mech. Phys. Solids
,
24
(
2–3
), pp.
147
160
.
36.
Rule
,
W. K.
, and
Jones
,
S. E.
,
1998
, “
A Revised Form for the Johnson–Cook Strength Model
,”
Int. J. Impact Eng.
,
21
(8), pp. 609–624.
37.
Hao
,
S.
, and
Brocks
,
W.
,
1997
, “
The Gurson-Tvergaard-Needleman-Model for Rate and Temperature-Dependent Materials With Isotropic and Kinematic Hardening
,”
Comput. Mech.
,
20
(
1
), pp.
34
40
.
38.
Xue
,
L.
,
2008
, “
Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3343
3366
.
39.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
40.
Amaral
,
R.
,
Teixeira
,
P.
,
Azinpour
,
E.
,
Santos
,
A. D.
, and
de Sa
,
J. C.
,
2016
, “
Evaluation of Ductile Failure Models in Sheet Metal Forming
,” 12th International Conference on Numerical Methods in Industrial Forming Processes (
NUMIFORM
), Rosières-près-Troyes, France, July 4–7, Vol.
80
, p.
03004
.
41.
DASSAULT SYSTÈMES,
2002
, “
ABAQUS Theory Manual Version 6.3
,” DASSAULT SYSTÈMES, Waltham, MA.
42.
Banerjee
,
A.
,
Dhar
,
S.
,
Acharyya
,
S.
,
Datta
,
D.
, and
Nayak
,
N.
,
2015
, “
Determination of Johnson Cook Material and Failure Model Constants and Numerical Modelling of Charpy Impact Test of Armour Steel
,”
Mater. Sci. Eng. A
,
640
, pp.
200
209
.
43.
Petek
,
A.
, and
Kuzman
,
K.
,
2010
, “
Prediction of Surface Stretches and Sheet Metal Thinning by Single Point Incremental Forming in Digital Environment
,”
J. Technol. Plast.
,
35
(
1–2
), pp. 1–9.http://www.dpm.ftn.uns.ac.rs/JTP/Download/2010/Article6.pdf
44.
Bhattacharya
,
A.
,
Maneesh
,
K.
,
Reddy
,
N. V.
, and
Cao
,
J.
,
2011
, “
Formability and Surface Finish Studies in Single Point Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061020
.
45.
Silva
,
M. B.
,
Skjoedt
,
M.
,
Atkins
,
A. G.
,
Bay
,
N.
, and
Martins
,
P. A. F.
,
2008
, “
Single‐Point Incremental Forming and Formability—Failure Diagrams
,”
J. Strain Anal. Eng. Des.
,
43
(
1
), pp.
15
35
.
46.
Fan
,
J. P.
,
Tang
,
C. Y.
,
Tsui
,
C. P.
,
Chan
,
L. C.
, and
Lee
,
T. C.
,
2006
, “
3D Finite Element Simulation of Deep Drawing With Damage Development
,”
Int. J. Mach. Tools Manuf.
,
46
(
9
), pp.
1035
1044
.
47.
Li
,
J.
,
Li
,
S.
,
Xie
,
Z.
, and
Wang
,
W.
,
2015
, “
Numerical Simulation of Incremental Sheet Forming Based on GTN Damage Model
,”
Int. J. Adv. Manuf. Technol.
,
81
(9–12), pp. 2053–2065.
48.
Sun
,
J. S.
,
Lee
,
K. H.
, and
Lee
,
H. P.
,
2000
, “
Comparison of Implicit and Explicit Finite Element Methods for Dynamic Problems
,”
J. Mater. Process. Technol.
,
105
(
1
), pp.
110
118
.
49.
Tekkaya
,
A. E.
,
2000
, “
State-of-the-Art of Simulation of Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
103
(
1
), pp.
14
22
.
You do not currently have access to this content.