Owing to its outstanding physical and mechanical properties, polycrystalline diamond (PCD) is ideal for cutting titanium alloys. However, the high temperature and stress caused by the interaction of tool surface and chip flow lead to different types of wear. This paper investigates the wear mechanisms of PCD tools in three different tribological regions: sticking zone, transition zone, and sliding zone, when machining titanium alloy Ti6Al4V. The tribological behavior of PCD tools in the wear processes were analyzed through both experiments and theoretical calculations. Analytical models of stresses and temperature distribution were developed and validated by turning experiments. PCD tools, consisting of diamond grains of different sizes: CTB002 (2 μm), CTB010 (10 μm), and CTM302 (2–30 μm), were used to cut Ti6Al4V at the normal cutting speed of 160 m/min and high cutting speed 240 m/min. It was found that adhesion, abrasion and diffusion dominated the wear process of PCD tools in different worn regions. Microscopic characters showed that the wear mechanisms were different in the three tribological regions, which was affected by the distribution of stresses and temperature. “Sticking” of workpiece material was obvious on the cutting edge, abrasion was severe in the transition zone, and adhesion was significant in the sliding zone. The shapes and morphological characters in different worn regions were affected by the stresses distribution and the types of PCD materials.

References

1.
Arsecularatne
,
J. A.
,
Zhang
,
L. C.
, and
Montross
,
C.
,
2006
, “
Wear and Tool Life of Tungsten Carbide, PCBN and PCD Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
482
491
.
2.
Liang
,
L.
,
Liu
,
X.
,
Li
,
X.-Q.
, and
Li
,
Y.-Y.
,
2015
, “
Wear Mechanisms of WC–10Ni3Al Carbide Tool in Dry Turning of Ti6Al4V
,”
Int. J. Refractory Met. Hard Mater.
,
48
, pp.
272
285
.
3.
Pérez
,
J.
,
Llorente
,
J.
, and
Sanchez
,
J.
,
2000
, “
Advanced Cutting Conditions for the Milling of Aeronautical Alloys
,”
J. Mater. Process. Technol.
,
100
(
1–3
), pp.
1
11
.
4.
Tso
,
P.-L.
, and
Liu
,
Y.-G.
,
2002
, “
Study on PCD Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
3
), pp.
331
334
.
5.
Kozak
,
J.
,
Rajurkar
,
K. P.
, and
Wang
,
S. Z.
,
1994
, “
Material Removal in WEDM of PCD Blanks
,”
J. Eng. Ind.
,
116
(
3
), pp.
363
369
.
6.
Sreejith
,
P.
,
Krishnamurthy
,
R.
,
Malhotra
,
S.
, and
Narayanasamy
,
K.
,
2000
, “
Evaluation of PCD Tool Performance During Machining of Carbon/Phenolic Ablative Composites
,”
J. Mater. Process. Technol.
,
104
(
1–2
), pp.
53
58
.
7.
Pan
,
W.
,
Kamaruddin
,
A.
,
Ding
,
S.
, and
Mo
,
J.
,
2014
, “
Experimental Investigation of End Milling of Titanium Alloys With Polycrystalline Diamond Tools
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
228
(
8
), pp.
832
844
.
8.
Honghua
,
S.
,
Peng
,
L.
,
Yucan
,
F.
, and
Jiuhua
,
X.
,
2012
, “
Tool Life and Surface Integrity in High-Speed Milling of Titanium Alloy TA15 with PCD/PCBN Tools
,”
Chin. J. Aeronaut.
,
25
(
5
), pp.
784
790
.
9.
Amin
,
A. K. M. N.
,
Ismail
,
A. F.
, and
Nor Khairusshima
,
M. K.
,
2007
, “
Effectiveness of Uncoated WC–Co and PCD Inserts in End Milling of Titanium Alloy—Ti–6Al–4V
,”
J. Mater. Process. Technol.
,
192–193
, pp.
147
158
.
10.
Kim
,
D.
,
Beal
,
A.
, and
Kwon
,
P.
,
2016
, “
Effect of Tool Wear on Hole Quality in Drilling of Carbon Fiber Reinforced Plastic–Titanium Alloy Stacks Using Tungsten Carbide and Polycrystalline Diamond Tools
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031006
.
11.
Chen
,
Y.
,
Zhang
,
L. C.
,
Arsecularatne
,
J. A.
, and
Montross
,
C.
,
2006
, “
Polishing of Polycrystalline Diamond by the Technique of Dynamic Friction—Part 1: Prediction of the Interface Temperature Rise
,”
Int. J. Mach. Tools Manuf.
,
46
(
6
), pp.
580
587
.
12.
Lu
,
M.-C.
, and
Kannatey-Asibu
,
J. E.
,
2004
, “
Flank Wear and Process Characteristic Effect on System Dynamics in Turning
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
131
140
.
13.
Nguyen
,
T.
,
Kwon
,
P.
,
Kang
,
D.
, and
Bieler
,
T.
,
2016
, “
The Origin of Flank Wear in Turning Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
38
(12), p. 121013.
14.
S. Zhang, J. F. Li, J. Sun, and F. Jiang, 2010, “
Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy
,” The International Journal of Advanced Manufacturing Technology,
46
(1), p. 69–78.
15.
Li
,
A.
,
Zhao
,
J.
,
Wang
,
D.
,
Zhao
,
J.
, and
Dong
,
Y.
,
2013
, “
Failure Mechanisms of a PCD Tool in High-Speed Face Milling of Ti–6Al–4V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
1959
1966
.
16.
Arrazola
,
P.-J.
,
Garay
,
A.
,
Iriarte
,
L.-M.
,
Armendia
,
M.
,
Marya
,
S.
, and
Le Maitre
,
F.
,
2009
, “
Machinability of Titanium Alloys (Ti6Al4V and Ti555. 3)
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2223
2230
.
17.
Bhowmick
,
S.
, and
Alpas
,
A. T.
,
2013
, “
The Performance of Diamond-Like Carbon Coated Drills in Thermally Assisted Drilling of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061019
.
18.
da Silva
,
R. B.
,
Machado
,
Á. R.
,
Ezugwu
,
E. O.
,
Bonney
,
J.
, and
Sales
,
W. F.
,
2013
, “
Tool Life and Wear Mechanisms in High Speed Machining of Ti–6Al–4V Alloy With PCD Tools Under Various Coolant Pressures
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1459
1464
.
19.
Ezugwu
,
E. O.
,
Bonney
,
J.
,
Da Silva
,
R. B.
, and
Çakir
,
O.
,
2007
, “
Surface Integrity of Finished Turned Ti–6Al–4V Alloy With PCD Tools Using Conventional and High Pressure Coolant Supplies
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
884
891
.
20.
McNamara
,
D.
,
Carolan
,
D.
,
Alveen
,
P.
,
Murphy
,
N.
, and
Ivanković
,
A.
,
2016
, “
Effect of Loading Rate on the Fracture Toughness and Failure Mechanisms of Polycrystalline Diamond (PCD)
,”
Int. J. Refractory Met. Hard Mater.
,
60
, pp.
1
10
.
21.
Miess
,
D.
, and
Rai
,
G.
,
1996
, “
Fracture Toughness and Thermal Resistance of Polycrystalline Diamond Compacts
,”
Mater. Sci. Eng.: A
,
209
(
1–2
), pp.
270
276
.
22.
McNamara
,
D.
,
Alveen
,
P.
,
Damm
,
S.
,
Carolan
,
D.
,
Rice
,
J. H.
,
Murphy
,
N.
, and
Ivanković
,
A.
,
2015
, “
A Raman Spectroscopy Investigation Into the Influence of Thermal Treatments on the Residual Stress of Polycrystalline Diamond
,”
Int. J. Refractory Met. Hard Mater.
,
52
, pp.
114
122
.
23.
Jianxin
,
D.
,
Hui
,
Z.
,
Ze
,
W.
, and
Aihua
,
L.
,
2011
, “
Friction and Wear Behavior of Polycrystalline Diamond at Temperatures Up to 700 C
,”
Int. J. Refractory Met. Hard Mater.
,
29
(
5
), pp.
631
638
.
24.
Jaworska
,
L.
,
Szutkowska
,
M.
,
Klimczyk
,
P.
,
Sitarz
,
M.
,
Bucko
,
M.
,
Rutkowski
,
P.
,
Figiel
,
P.
, and
Lojewska
,
J.
,
2014
, “
Oxidation, Graphitization and Thermal Resistance of PCD Materials With the Various Bonding Phases of Up to 800 °C
,”
Int. J. Refractory Met. Hard Mater.
,
45
, pp.
109
116
.
25.
Westraadt
,
J. E.
,
Sigalas
,
I.
, and
Neethling
,
J. H.
,
2015
, “
Characterisation of Thermally Degraded Polycrystalline Diamond
,”
Int. J. Refractory Met. Hard Mater.
,
48
, pp.
286
292
.
26.
Kagnaya
,
T.
,
Boher
,
C.
,
Lambert
,
L.
,
Lazard
,
M.
, and
Cutard
,
T.
,
2014
, “
Microstructural Analysis of Wear Micromechanisms of WC–6Co Cutting Tools During High Speed Dry Machining
,”
Int. J. Refractory Met. Hard Mater.
,
42
(
Suppl C
), pp.
151
162
.
27.
Beste
,
U.
, and
Jacobson
,
S.
,
2008
, “
A New View of the Deterioration and Wear of WC/Co Cemented Carbide Rock Drill Buttons
,”
Wear
,
264
(
11–12
), pp.
1129
1141
.
28.
Hatt
,
O.
,
Crawforth
,
P.
, and
Jackson
,
M.
,
2017
, “
On the Mechanism of Tool Crater Wear During Titanium Alloy Machining
,”
Wear
,
374–375
, pp.
15
20
.
29.
Li
,
G.
,
Rahim
,
M.
,
Ding
,
S.
, and
Sun
,
S.
,
2015
, “
Performance and Wear Analysis of Polycrystalline Diamond (PCD) Tools Manufactured With Different Methods in Turning Titanium Alloy Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
85
(1–4), pp.
1
17
.
30.
Kato
,
S.
,
Yamaguchi
,
K.
, and
Yamada
,
M.
,
1972
, “
Stress Distribution at the Interface Between Tool and Chip in Machining
,”
J. Eng. Ind.
,
94
(
2
), pp.
683
689
.
31.
Karpat
,
Y.
, and
Özel
,
T.
,
2005
, “
Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
435
444
.
32.
Childs
,
T.
,
2000
, “
Metal Machining: Theory and Applications, Butterworth-Heinemann
,” Oxford, UK.
33.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
,
1998
, “
Modelling of Orthogonal Cutting With a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
,
46
(
10
), pp.
2103
2138
.
34.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
A New Microstructure-Sensitive Flow Stress Model for the High-Speed Machining of Titanium Alloy Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051006
.
35.
Kragel′skiĭ
,
I. V.
,
Dobychin
,
M. N.
, and
Kombalov
,
V. S.
,
1982
,
Friction and Wear: Calculation Methods
,
Pergamon Press
, Oxford, UK.
36.
Zhang
,
C.
,
Lu
,
J.
,
Zhang
,
F.
, and
Butt
,
S. I.
,
2017
, “
Identification of a New Friction Model at Tool-Chip Interface in Dry Orthogonal Cutting
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
921
932
.
37.
Li
,
K.-M.
, and
Liang
,
S. Y.
,
2005
, “
Modeling of Cutting Temperature in Near Dry Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
416
424
.
38.
Hong
,
S. Y.
, and
Ding
,
Y.
,
2001
, “
Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
10
), pp.
1417
1437
.
39.
Tanveer
,
A.
,
Marla
,
D.
, and
Kapoor
,
S. G.
,
2017
, “
A Thermal Model to Predict Tool Temperature in Machining of Ti–6Al–4V Alloy With an Atomization-Based Cutting Fluid Spray System
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071016
.
40.
Rahim
,
M.
,
Li
,
G.
,
Ding
,
S.
,
Mo
,
J.
, and
Brandt
,
M.
,
2015
, “
Electrical Discharge Grinding Versus Abrasive Grinding in Polycrystalline Diamond Machining—Tool Quality and Performance Analysis
,”
Int. J. Adv. Manuf. Technol.
,
85
(1–4), pp.
1
15
.
41.
Li
,
G.
,
Yi
,
S.
,
Sun
,
S.
, and
Ding
,
S.
,
2017
, “
Wear Mechanisms and Performance of Abrasively Ground Polycrystalline Diamond Tools of Different Diamond Grains in Machining Titanium Alloy
,”
J. Manuf. Process.
,
29
(
Suppl C
), pp.
320
331
.
42.
Rahim
,
M.
,
Ding
,
S.
, and
Mo
,
J.
,
2015
, “
Electrical Discharge Grinding of Polycrystalline Diamond—Effect of Machining Parameters and Finishing in-Feed
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021017
.
43.
Oosthuizen
,
G.
,
Akdogan
,
G.
,
Dimitrov
,
D.
, and
Treunicht
,
N.
,
2010
, “
A Review of the Machinability of Titanium Alloys
,”
R D J. South Afr. Inst. Mech. Eng.
,
26
(
3
), pp.
43
52
.
44.
Hong
,
S. Y.
,
Ding
,
Y.
, and
Jeong
,
W.-C.
,
2001
, “
Friction and Cutting Forces in Cryogenic Machining of Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2271
2285
.
45.
Bahi
,
S.
,
Nouari
,
M.
,
Moufki
,
A.
,
Mansori
,
M. E.
, and
Molinari
,
A.
,
2012
, “
Hybrid Modelling of Sliding–Sticking Zones at the Tool–Chip Interface Under Dry Machining and Tool Wear Analysis
,”
Wear
,
286–287
(
Suppl C
), pp.
45
54
.
46.
Kümmel
,
J.
,
Braun
,
D.
,
Gibmeier
,
J.
,
Schneider
,
J.
,
Greiner
,
C.
,
Schulze
,
V.
, and
Wanner
,
A.
,
2015
, “
Study on Micro Texturing of Uncoated Cemented Carbide Cutting Tools for Wear Improvement and Built-Up Edge Stabilisation
,”
J. Mater. Process. Technol.
,
215
, pp.
62
70
.
47.
Park
,
K.-H.
,
Beal
,
A.
,
Kim
,
D.
,
Kwon
,
P.
, and
Lantrip
,
J.
,
2011
, “
Tool Wear in Drilling of Composite/Titanium Stacks Using Carbide and Polycrystalline Diamond Tools
,”
Wear
,
271
(
11–12
), pp.
2826
2835
.
48.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081001
.
You do not currently have access to this content.