Due to the enclosed chip evacuation space in deep hole drilling process, chips are accumulated in drill flutes as drilling depth increases, resulting in the increase of drilling torque and lead to drill breakage. Peck drilling is a widely used method to periodically alleviate the drilling torque caused by chip evacuation; the drilling depth in each step directly determines both drill life and machining efficiency. The existing drilling depth optimization methods face problems including low accuracy of the prediction model, the hysteresis of signal diagnosis, and onerous experiments. To overcome these problems, a novel drilling depth optimization method for peck drilling based on the iterative learning optimization is proposed. First, the chip evacuation torque coefficients (CETCs) are introduced into the chip evacuation torque model to simplify the model for learning. Then, the effect of chip removal process in peck drilling on drilling depth is analyzed. The extended depth coefficient by chip removal (EDCbCR) is introduced to develop the relationship between the extended depth in each drilling step and drilling depth. On the foundation of the modeling above, an iterative learning method for drilling depth optimization in peck drilling is developed, in which a modified Newton's method is proposed to maximize machining efficiency and avoid drill breakage. In experiments with different cutting parameters, the effectiveness of the proposed method is validated by comparing the optimized and measured results. The results show that the presented learning method is able to obtain the maximum drilling depth accurately with the error less than 10%.

References

References
1.
Kim
,
H. Y.
, and
Ahn
,
J. H.
,
2002
, “
Chip Disposal State Monitoring in Drilling Using Neural Network Based Spindle Motor Power Sensing
,”
Int. J. Mach. Tool. Manuf.
,
42
(
10
), pp.
1113
1119
.
2.
Khan
,
S. A.
,
Nazir
,
A.
,
Mughal
,
M. P.
,
Saleem
,
M. Q.
,
Hussain
,
A.
, and
Ghulam
,
Z.
,
2017
, “
Deep Hole Drilling of AISI 1045 Via High-Speed Steel Twist Drills: Evaluation of Tool Wear and Hole Quality
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
1115
1125
.
3.
Fu
,
L.
,
Ling
,
S. F.
, and
Tseng
,
C. H.
,
2007
, “
On-Line Breakage Monitoring of Small Drills With Input Impedance of Driving Motor
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
457
465
.
4.
Ding
,
W.
,
Dai
,
C.
,
Yu
,
T.
,
Xu
,
J.
, and
Fu
,
Y.
,
2017
, “
Grinding Performance of Textured Monolayer CBN Wheels: Undeformed Chip Thickness Nonuniformity Modeling and Ground Surface Topography Prediction
,”
Int. J. Mach. Tool. Manuf.
,
122
, pp.
66
80
.
5.
Liu
,
C.
,
Ding
,
W.
,
Yu
,
T.
, and
Yang
,
C.
,
2018
, “
Materials Removal Mechanism in High-Speed Grinding of Particulate Reinforced Titanium Matrix Composites
,”
Precis. Eng.
,
51
, pp.
68
77
.
6.
Mellinger
,
J. C.
,
Ozdoganlar
,
O. B.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
2002
, “
Modeling Chip-Evacuation Forces and Prediction of Chip-Clogging in Drilling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
605
614
.
7.
Lacalle
,
L. N. L. D.
,
Fernández
,
A.
,
Olvera
,
D.
,
Lamikiz
,
A.
,
Olvera
,
D.
,
Rodríguez
,
C.
, and
Elias
,
A.
,
2011
, “
Monitoring Deep Twist Drilling for a Rapid Manufacturing of Light High-Strength Parts
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2745
2752
.
8.
Kim
,
D. W.
,
Lee
,
Y. S.
,
Min
,
S. P.
, and
Chong
,
N. C.
,
2009
, “
Tool Life Improvement by Peck Drilling and Thrust Force Monitoring During Deep-Micro-Hole Drilling of Steel
,”
Int. J. Mach. Tool. Manuf.
,
49
(
3–4
), pp.
246
255
.
9.
Mellinger
,
J. C.
,
Ozdoganlar
,
O. B.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Modeling Chip-Evacuation Forces in Drilling for Various Flute Geometries
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
405
415
.
10.
Kalita
,
B.
,
2015
, “
A Review on Optimization of Cutting Parameters in Drilling Using Taguchi Method
,”
Int. J. Eng. Trends Technol.
,
29
(
2
), pp.
82
86
.
11.
Kannan
,
T. D. B.
,
Kannan
,
G. R.
,
Kumar
,
B. S. N.
, and
Baskar
,
D.
,
2014
, “
Application of Artificial Neural Network Modeling for Machining Parameters Optimization in Drilling Operation
,”
Procedia Mater. Sci.
,
5
, pp.
2242
2249
.
12.
Jantunen
,
E.
,
2002
, “
A Summary of Methods Applied to Tool Condition Monitoring in Drilling
,”
Int. J. Mach. Tool. Manuf.
,
42
(
9
), pp.
997
1010
.
13.
Luo
,
M.
,
Luo
,
H.
,
Axinte
,
D.
,
Liu
,
D.
,
Mei
,
J.
, and
Liao
,
Z.
,
2018
, “
A Wireless Instrumented Milling Cutter System With Embedded PVDF Sensors
,”
Mech. Syst. Signal Process.
,
110
, pp.
556
568
.
14.
Kavaratzis
,
Y.
, and
Maiden
,
J. D.
,
1990
, “
Real Time Process Monitoring and Adaptive Control During CNC Deep Hole Drilling
,”
Int. J. Prod. Res.
,
28
(
12
), pp.
2201
2218
.
15.
Tarng
,
Y. S.
, and
Lee
,
B. Y.
,
1999
, “
Amplitude Demodulation of the Induction Motor Current for the Tool Breakage Detection in Drilling Operations
,”
Rob. Comput-Integr. Manuf.
,
15
(
4
), pp.
313
318
.
16.
Devries
,
M. F.
, and
Wu
,
S. M.
,
1970
, “
Evaluation of the Effects of Design Variables on Drill Temperature Responses
,”
J. Eng. Ind.
,
92
(
3
), pp.
699
705
.
17.
Zhang
,
J.
,
Starly
,
B.
,
Cai
,
Y.
,
Cohen
,
P. H.
, and
Lee
,
Y. S.
,
2017
, “
Particle Learning in Online Tool Wear Diagnosis and Prognosis
,”
J. Manuf. Process.
,
28
, pp.
457
463
.
18.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
19.
Sörnmo
,
O.
,
Olofsson
,
B.
,
Robertsson
,
A.
, and
Johansson
,
R.
,
2015
, “
Learning Approach to Cycle-Time-Minimization of Wood Milling Using Adaptive Force Control
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011013
.
20.
Shao
,
C.
,
Ren
,
J.
,
Wang
,
H.
,
Jin
,
J.
, and
Hu
,
S.
,
2016
, “
Improving Machined Surface Shape Prediction by Integrating Multi-Task Learning With Cutting Force Variation Modeling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011014
.
21.
Lu
,
J. S.
,
Cheng
,
M. Y.
,
Su
,
K. H.
, and
Tsai
,
M. C.
,
2017
, “
Wire Tension Control of an Automatic Motor Winding Machine—An Iterative Learning Sliding Mode Control Approach
,”
Rob. Comput-Integr. Manuf.
,
50
, pp.
50
62
.
22.
Wang
,
C.
,
Zhao
,
Y.
,
Chen
,
Y.
, and
Tomizuka
,
M.
,
2015
, “
Nonparametric Statistical Learning Control of Robot Manipulators for Trajectory or Contour Tracking
,”
Robot Comput. Integr. Manuf.
,
35
, pp.
96
103
.
23.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
Control Syst. IEEE.
,
26
(
3
), pp.
96
114
.
24.
Mansour
,
S.
, and
Seethaler
,
R.
,
2016
, “
Feedrate Optimization for Computer Numerically Controlled Machine Tools Using Modeled and Measured Process Constraints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011012
.
25.
Kondo
,
E.
, and
Shimana
,
K.
,
2012
, “
Monitoring of Prefailure Phase and Detection of Tool Breakage in Micro-Drilling Operations
,”
Procedia CIRP
,
1
, pp.
581
586
.
26.
Wan
,
M.
,
Ma
,
Y. C.
,
Feng
,
J.
, and
Zhang
,
W. H.
,
2016
, “
Study of Static and Dynamic Ploughing Mechanisms by Establishing Generalized Model With Static Milling Forces
,”
Int. J. Mech. Sci.
,
114
, pp.
120
131
.
27.
Luo
,
M.
,
Luo
,
H.
,
Zhang
,
D.
, and
Tang
,
K.
,
2018
, “
Improving Tool Life in Multi-Axis Milling of Ni-Based Superalloy With Ball-End Cutter Based on the Active Cutting Edge Shift Strategy
,”
J. Mater. Process. Technol.
,
252
, pp.
105
115
.
28.
Yao
,
Q.
,
Luo
,
M.
,
Zhang
,
D.
, and
Wu
,
B.
,
2018
, “
Identification of Cutting Force Coefficients in Machining Process Considering Cutter Vibration
,”
Mech. Syst. Signal Process.
,
103
, pp.
39
59
.
29.
Heinemann
,
R.
, and
Hinduja
,
S.
,
2012
, “
A New Strategy for Tool Condition Monitoring of Small Diameter Twist Drills in Deep-Hole Drilling
,”
Int. J. Mach. Tool. Manuf.
,
52
(
1
), pp.
69
76
.
30.
Aized
,
T.
, and
Amjad
,
M.
,
2013
, “
Quality Improvement of Deep-Hole Drilling Process of AISI D2
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2493
2503
.
31.
Ke
,
F.
,
Ni
,
J.
, and
Stephenson
,
D. A.
,
2006
, “
Chip Thickening in Deep-Hole Drilling
,”
Int. J. Mach. Tool. Manuf.
,
46
(
12–13
), pp.
1500
1507
.
32.
Heinemann
,
R.
,
Hinduja
,
S.
,
Barrow
,
G.
, and
Petuelli
,
G.
,
2006
, “
The Performance of Small Diameter Twist Drills in Deep-Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
884
892
.
33.
Cruz
,
C. E. D.
,
Aguiar
,
P. R. D.
,
Á. R.
,
Machado
,
Bianchi
,
E. C.
,
Contrucci
,
J. G.
, and
Neto
,
F. C.
,
2013
, “
Monitoring in Precision Metal Drilling Process Using Multi-Sensors and Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
66
(
1–4
), pp.
151
158
.
34.
Battiti
,
R.
,
1992
, “
First- and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method
,”
Neural Comput.
,
4
(
2
), pp.
141
166
.
35.
Glasse
,
B.
, and
Fritsching
,
U.
,
2016
, “
Continuous Monitoring of Metal Working Fluid Quality in Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
044501
.
You do not currently have access to this content.