Direct thermal imprinting of nanostructures on glass substrates is reliable when manufacturing net-shaped glass devices with various surface functions. However, several problems are recognized, including a long thermal cycle, tedious optimization, difficulties in ensuring high level replication fidelity, and unnecessary thermal deformation of the glass substrate. Here, we describe a more sustainable and energy efficient method for direct thermal imprinting of nanostructures onto glass substrates; we use silicon mold transparent to infrared between 2.5 and 25 μm in wavelength combined with CO2 laser scanning irradiation. The glass strongly absorbed the 10.6 μm wavelength irradiation, triggering substantial heating of a thin layer on the glass surface, which significantly enhanced the filling of pressed glass material into nanostructured silicon mold cavities. For comparison, we conducted conventional direct glass thermal imprinting experiments, further emphasizing the advantages of our new method, which outperformed conventional methods. The thermal mass cycle was shorter and the imprint pattern quality and yield, higher. Our method is sustainable, allowing more rapid scalable fabrication of glass nanostructures using less energy without sacrificing the quality and productivity of the fabricated devices.

References

References
1.
Yi
,
A. Y.
,
Chen
,
Y.
,
Klocke
,
F.
,
Pongs
,
G.
,
Demmer
,
A.
,
Grewell
,
D.
, and
Benatar
,
A.
,
2006
, “
A High Volume Precision Compression Molding Process of Glass Diffractive Optics by Use of a Micromachined Fused Silica Wafer Mold and Low Tg Optical Glass
,”
J. Micromech. Microeng.
,
16
(
10
), p.
2000
.
2.
Tamura
,
T.
,
Umetani
,
M.
,
Yamada
,
K.
,
Tanaka
,
Y.
,
Kintaka
,
K.
,
Kasa
,
H.
, and
Nishii
,
J.
,
2010
, “
Fabrication of Antireflective Subwavelength Structure on Spherical Glass Surface Using Imprinting Process
,”
Appl. Phys. Express
,
3
(
11
), p.
112501
.
3.
Palanisamy
,
B.
,
Han
,
S.-Y.
, and
Paul
,
B. K.
,
2016
, “
A Multilayer Strategy for Improving the Abrasion Resistance of Silica Nanoparticle-Based Motheye Antireflective Coatings on Glass
,”
ASME J. Micro- Nano-Manuf.
,
4
(
3
), p.
031005
.
4.
Huang
,
Y.
,
Liu
,
L.
,
Johnson
,
M.
,
Hillier
,
A. C.
, and
Lu
,
M.
,
2016
, “
One-Step Sol–Gel Imprint Lithography for Guided-Mode Resonance Structures
,”
Nanotechnology
,
27
(
9
), p.
095302
.
5.
Wang
,
F.
,
Chen
,
Y.
,
Klocke
,
F.
,
Pongs
,
G.
, and
Yi
,
A. Y.
,
2009
, “
Numerical Simulation Assisted Curve Compensation in Compression Molding of High Precision Aspherical Glass Lenses
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011014
.
6.
Firestone
,
G. C.
, and
Yi
,
A. Y.
,
2005
, “
Precision Compression Molding of Glass Microlenses and Microlens Arrays—An Experimental Study
,”
Appl. Optics
,
44
(
29
), pp.
6115
6122
.
7.
Choi
,
W.
,
Lee
,
J.
,
Kim
,
W.-B.
,
Min
,
B.-K.
,
Kang
,
S.
, and
Lee
,
S.-J.
,
2004
, “
Design and Fabrication of Tungsten Carbide Mould With Micro Patterns Imprinted by Micro Lithography
,”
J. Micromech. Microeng.
,
14
(
11
), pp.
1519
1525
.
8.
Chen
,
Q.
,
Chen
,
Q.
, and
Maccioni
,
G.
,
2013
, “
Fabrication of Microfluidics Structures on Different Glasses by Simplified Imprinting Technique
,”
Curr. Appl. Phys.
,
13
(
1
), pp.
256
261
.
9.
Billo
,
R. E.
,
Wilson
,
P. A.
,
Priest
,
J. W.
,
Romero-Ortega
,
M.
,
Brunskill
,
S. R.
, and
Keens
,
D.
,
2014
, “
Slump Molding of Microchannel Arrays in Soda-Lime Glass for Bioanalytical Device Development Richard
,”
ASME J. Micro- Nano-Manuf.
,
2
(
4
), p.
041006
.
10.
Yu
,
E.
,
Kim
,
S.-C.
,
Lee
,
H. J.
,
Oh
,
K. H.
, and
Moon
,
M.-W.
,
2015
, “
Extreme Wettability of Nanostructured Glass Fabricated by Non-Lithographic, Anisotropic Etching
,”
Sci. Reports
,
5
(
1
), p.
9362
.
11.
Wang
,
E.
, and
Zhao
,
Y.
,
2014
, “
Etching of Nanostructures on Soda-Lime Glass
,”
Opt. Lett.
,
39
(
13
), pp.
3748
3751
.
12.
Ryu
,
H.
,
Kim
,
P. K.
, and
Lim
,
G.
,
2012
, “
Advanced Glass Etching Method Exhibiting the Controllable Etch Stop Using Metal Etchant
,”
J. Micromech. Microeng.
,
22
(
12
), p.
125010
.
13.
Nieto
,
D.
,
Flores-Arias
,
M. T.
,
O'Connor
,
G. M.
, and
Gomez-Reino
,
C.
,
2010
, “
Laser Direct-Write Technique for Fabricating Microlens Arrays on Soda-Lime Glass With a Nd: YVO 4 Laser
,”
Appl. Opt.
,
49
(
26
), pp.
4979
4983
.
14.
Zheng
,
Z.-P.
,
Cheng
,
W.-H.
,
Huang
,
F.-Y.
, and
Yan
,
B.-H.
,
2007
, “
3D Microstructuring of Pyrex Glass Using the Electrochemical Discharge Machining Process
,”
J. Micromech. Microeng.
,
17
(
5
), p.
960
.
15.
Yi
,
A. Y.
, and
Jain
,
A.
,
2005
, “
Compression Molding of Aspherical Glass Lenses–a Combined Experimental and Numerical Analysis
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
579
586
.
16.
Vu
,
A.-T.
,
Kreilkamp
,
H.
,
Dambon
,
O.
, and
Klocke
,
F.
, “
Nonisothermal Glass Molding for the Cost-Efficient Production of Precision Freeform Optics
,”
Opt. Eng.
,
55
(
7
), p.
071207
.
17.
Chen
,
Y.
,
Yi
,
A. Y.
,
Su
,
L.
,
Klocke
,
F.
, and
Pongs
,
G.
,
2008
, “
Numerical Simulation and Experimental Study of Residual Stresses in Compression Molding of Precision Glass Optical Components
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051012
.
18.
Hirai
,
Y.
,
Kanakugi
,
K.
,
Yamaguchi
,
T.
,
Yao
,
K.
,
Kitagawa
,
S.
, and
Tanaka
,
Y.
,
2003
, “
Fine Pattern Fabrication on Glass Surface by Imprint Lithography
,”
Microelectron. Eng.
,
67
, pp.
237
244
.
19.
Ishihara
,
K.
,
Fujita
,
M.
,
Matsubara
,
I.
,
Asano
,
T.
,
Noda
,
S.
,
Ohata
,
H.
,
Hirasawa
,
A.
,
Nakada
,
H.
, and
Shimoji
,
N.
,
2007
, “
Organic Light-Emitting Diodes With Photonic Crystals on Glass Substrate Fabricated by Nanoimprint Lithography
,”
Appl. Phys. Lett.
,
90
(
11
), p.
111114
.
20.
Yamada
,
K.
,
Umetani
,
M.
,
Tamura
,
T.
,
Tanaka
,
Y.
,
Kasa
,
H.
, and
Nishii
,
J.
,
2009
, “
Antireflective Structure Imprinted on the Surface of Optical Glass by SiC Mold
,”
Appl. Surf. Sci.
,
255
(
7
), pp.
4267
4270
.
21.
Prater
,
K.
,
Dukwen
,
J.
,
Scharf
,
T.
,
Herzig
,
H. P.
,
Plöger
,
S.
, and
Hermerschmidt
,
A.
,
2016
, “
Micro-Structuring of Glassy Carbon for Precision Glass Molding of Binary Diffractive Optical Elements
,”
Opt. Mater. Express
,
6
(
11
), pp.
3407
3416
.
22.
Takagi
,
H.
,
Miyazawa
,
S.-I.
,
Takahashi
,
M.
, and
Maeda
,
R.
,
2008
, “
Electrostatic Imprint Process for Glass
,”
Appl. Phys. Express
,
1
(
2
), p.
024003
.
23.
Li
,
H.
,
He
,
P.
,
Yu
,
J.
,
Lee
,
L. J.
, and
Yi
,
A. Y.
,
2015
, “
Localized Rapid Heating Process for Precision Chalcogenide Glass Molding
,”
Opt. Lasers Eng.
,
73
, pp.
62
68
.
24.
Chou
,
S. Y.
,
Keimel
,
C.
, and
Gu
,
J.
,
2002
, “
Ultrafast and Direct Imprint of Nanostructures in Silicon
,”
Nature
,
417
(
6891
), p.
835
.
25.
Xia
,
Q.
,
Keimel
,
C.
,
Ge
,
H.
,
Yu
,
Z.
,
Wu
,
W.
, and
Chou
,
S. Y.
,
2003
, “
Ultrafast Patterning of Nanostructures in Polymers Using Laser Assisted Nanoimprint Lithography
,”
Appl. Phys. Lett.
,
83
(
21
), pp.
4417
4419
.
26.
Cui
,
B.
,
Keimel
,
C.
, and
Chou
,
S. Y.
,
2009
, “
Ultrafast Direct Imprinting of Nanostructures in Metals by Pulsed Laser Melting
,”
Nanotechnology
,
21
(
4
), p.
045303
.
27.
Grigaliūnas
,
V.
,
Tamulevičius
,
S.
,
Tomašiūnas
,
R.
,
Kopustinskas
,
V.
,
Guobien
,
A.
, and
Jucius
,
D.
,
2004
, “
Laser Pulse Assisted Nanoimprint Lithography
,”
Thin Solid Films
,
453
, pp.
13
15
.
28.
Grigaliūnas
,
V.
,
Tamulevičius
,
S.
,
Muehlberger
,
M.
,
Jucius
,
D.
,
Guobienė
,
A.
,
Kopustinskas
,
V.
, and
Gudonytė
,
A.
,
2006
, “
Nanoimprint Lithography Using IR Laser Irradiation
,”
Appl. Surf. Sci.
,
253
(
2
), pp.
646
650
.
29.
Chen
,
C.-H.
,
Liu
,
C.-P.
,
Lee
,
Y.-C.
,
Hsiao
,
F.-B.
,
Chiu
,
C.-Y.
,
Chung
,
M.-H.
, and
Chiang
,
M.-H.
,
2006
, “
IR Laser-Assisted Micro/Nano-Imprinting
,”
J. Micromech. Microeng.
,
16
(
8
), p.
1463
.
30.
Nagato
,
K.
,
Takahashi
,
K.
,
Sato
,
T.
,
Choi
,
J.
,
Hamaguchi
,
T.
, and
Nakao
,
M.
,
2014
, “
Laser-Assisted Replication of Large-Area Nanostructures
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2444
2449
.
31.
Komori
,
M.
,
Uchiyama
,
H.
,
Takebe
,
H.
,
Kusuura
,
T.
,
Kobayashi
,
K.
,
Kuwahara
,
H.
, and
Tsuchiya
,
T.
,
2008
, “
Micro/Nanoimprinting of Glass Under High Temperature Using a CVD Diamond Mold
,”
J. Micromech. Microeng.
,
18
(
6
), p.
065013
.
32.
Kim
,
M.
,
Changsu
,
P.
,
Je
,
S.
,
Jang
,
H.
,
Joo
,
C.
, and
Kang
,
S.
,
2018
, “
Real-Time Compensation of Simultaneous Errors Induced by Optical Phase Difference and Substrate Motion in Scanning Beam Laser Interference Lithography System
,”
IEEE/ASME Trans. Mechatronics
,
23
(
4
), pp.
1491
1500
.
33.
Hung
,
Y. M.
,
Lu
,
Y. J.
, and
Sung
,
C. K.
,
2009
, “
Microstructure Patterning on Glass Substrate by Imprinting Process
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
577
582
.
34.
He
,
P.
,
Li
,
L.
,
Yu
,
J.
,
Huang
,
W.
,
Yen
,
Y.-C.
,
Lee
,
L. J.
, and
Allen
,
Y. Y.
,
2013
, “
Graphene-Coated Si Mold for Precision Glass Optics Molding
,”
Opt. Lett.
,
38
(
14
), pp.
2625
2628
.
35.
Clarke
,
G. A.
,
Xie
,
Y.
,
Eldridge
,
J. E.
, and
Parsons
,
R. R.
,
1996
, “
The Infrared Properties of Magnetron-Sputtered Diamond-like Thin Films
,”
Thin Solid Films
,
280
(
1–2
), pp.
130
135
.
36.
Sumita Optical Glass Inc.
,
2016
, “
Optics Glass Data Book
,” Sumita Optical Glass, Saitama, Japan, accessed Aug. 30, 2018, http://www.sumita-opt.co.jp/data/glassdata.pdf?1530008754
37.
Liu
,
X.
,
Zhou
,
T.
,
Zhang
,
L.
,
Zhou
,
W.
,
Yu
,
J.
,
Lee
,
L. J.
, and
Allen
,
Y. Y.
,
2018
, “
Simulation and Measurement of Refractive Index Variation in Localized Rapid Heating Molding for Polymer Optics
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011004
.
38.
Doualle
,
T.
,
Gallais
,
L.
,
Cormont
,
P.
,
Hébert
,
D.
,
Combis
,
P.
, and
Rullier
,
J.-L.
,
2016
, “
Thermo-Mechanical Simulations of CO2 Laser–Fused Silica Interactions
,”
J. Appl. Phys.
,
119
(
11
), p.
113106
.
39.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
CRC Press
, Boca Raton, FL.
40.
Saotome
,
Y.
,
Imai
,
K.
, and
Sawanobori
,
N.
,
2003
, “
Microformability of Optical Glasses for Precision Molding
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
379
384
.
41.
Boyd
,
I. W.
,
Binnie
,
T. D.
,
Wilson
,
J. I. B.
, and
Colles
,
M. J.
,
1984
, “
Absorption of Infrared Radiation in Silicon
,”
J. Appl. Phys.
,
55
(
8
), pp.
3061
3063
.
42.
Gallais
,
L.
,
Cormont
,
P.
, and
Rullier
,
J.-L.
,
2009
, “
Investigation of Stress Induced by CO2 Laser Processing of Fused Silica Optics for Laser Damage Growth Mitigation
,”
Opt. Express
,
17
(
26
), pp.
23488
23501
.
43.
Uhlmann
,
E.
,
Peukert
,
B.
,
Thom
,
S.
,
Prasol, L.
,
Furstmann, P.
,
Sammler, F.
, and
Richarz, S.
,
2016
, “
Solutions for Sustainable Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051009
.
44.
Pan
,
D.
,
Guan
,
D.
,
Jen
,
T.
, and
Yuan
,
C.
,
2016
, “
Atomic Layer Deposition Process Modeling and Experimental Investigation for Sustainable Manufacturing of Nano Thin Films
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101010
.
45.
Malhotra
,
R.
,
Strano
,
M.
, and
Chu
,
E. W.
,
2016
, “
Special Issue: Innovations in Materials Forming Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
090301
.
46.
Zhang
,
M.
,
Jun Chen
,
C.
,
Brandal
,
G.
,
Bian
,
D.
, and
Lawrence Yao
,
Y. Y.
,
2015
, “
Experimental and Numerical Investigation of Laser Forming of Closed-Cell Aluminum Foam
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021006
.
You do not currently have access to this content.