The regenerative milling chatter is usually regarded as some kind of bifurcation or chaos behaviors of the machining system. Although several chatter patterns such as the secondary Hopf, the period doubling, and the cyclic fold bifurcations were once reported, their relationships with cutting conditions remain undiscovered. This paper aims to uncover the dynamic mechanism of distinct chatter behaviors in general milling scenarios. First, two complementary methods, i.e., the generalized Runge–Kutta method and the time-domain simulation technique, are presented to jointly study the distribution rule of chatter patterns in stability lobe diagrams for milling processes with general flute-spacing tools considering runout. The theoretical predictions are validated by one published example and two cutting experiments under three different cutting conditions. Furthermore, the cutting signal characteristics and cutting surface topography of distinct chatter patterns are analyzed and compared in detail. On this basis, this paper studies the joint influences of cutting parameters, tool geometries, and runout on regenerative chatter behaviors with the proposed methods.

References

References
1.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.
,
53
(
2
), pp.
619
642
.
2.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
3.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann.
,
65
(
2
), pp.
785
808
.
4.
Hamann
,
D.
,
Walz
,
N.-P.
,
Fischer
,
A.
,
Hanss
,
M.
, and
Eberhard
,
P.
,
2018
, “
Fuzzy Arithmetical Stability Analysis of Uncertain Machining Systems
,”
Mech. Syst. Signal Process.
,
98
, pp.
534
547
.
5.
Xi
,
S.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Dynamic Modeling of Spindle Bearing System and Vibration Response Investigation
,”
Mech. Syst. Signal Process.
,
114
, pp.
486
511
.
6.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2016
, “
Modeling of Dynamic Instability Via Segmented Cutting Coefficients and Chatter Onset Detection in High-Speed Micromilling of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051005
.
7.
Duan
,
X.
,
Peng
,
F.
,
Yan
,
R.
,
Zhu
,
Z.
,
Huang
,
K.
, and
Li
,
B.
,
2016
, “
Estimation of Cutter Deflection Based on Study of Cutting Force and Static Flexibility
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041001
.
8.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
.
9.
Insperger
,
T.
,
Mann
,
B. P.
,
Surmann
,
T.
, and
Stépán
,
G.
,
2008
, “
On the Chatter Frequencies of Milling Processes With Runout
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1081
1089
.
10.
Seguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peigné
,
G.
,
2010
, “
On the Stability of High-Speed Milling With Spindle Speed Variation
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
883
895
.
11.
Davies
,
M. A.
,
Dutterer
,
B.
,
Pratt
,
J. R.
,
Schaut
,
A. J.
, and
Bryan
,
J. B.
,
1998
, “
On the Dynamics of High-Speed Milling With Long, Slender Endmills
,”
CIRP Ann.
,
47
(
1
), pp.
55
60
.
12.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
,
2002
, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
217
255
.
13.
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2005
, “
On Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
769
781
.
14.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P.
, and
Mann
,
B.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
.
15.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
16.
Mann
,
B. P.
,
Bayly
,
P. V.
,
Davies
,
M. A.
, and
Halley
,
J. E.
,
2004
, “
Limit Cycles, Bifurcations, and Accuracy of the Milling Process
,”
J. Sound Vib.
,
277
(
1–2
), pp.
31
48
.
17.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
18.
Butcher
,
E. A.
,
Nindujarla
,
P.
, and
Bueler
,
E.
,
2005
, “
Stability of Up- and Down-Milling Using Chebyshev Collocation Method
,”
ASME
Paper No. DETC2005-84880
.
19.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2014
, “
Runge–Kutta Methods for a Semi-Analytical Prediction of Milling Stability
,”
Nonlinear Dyn.
,
76
(
1
), pp.
289
304
.
20.
Nayfeh
,
A. H.
, and
Nayfeh
,
N. A.
,
2011
, “
Analysis of the Cutting Tool on a Lathe
,”
Nonlinear Dyn.
,
63
(
3
), pp.
395
416
.
21.
Sims
,
N. D.
,
Mann
,
B.
, and
Huyanan
,
S.
,
2008
, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3–5
), pp.
664
686
.
22.
Yusoff
,
A. R.
,
2016
, “
Identifying Bifurcation Behavior During Machining Process for an Irregular Milling Tool Geometry
,”
Measurement
,
93
, pp.
57
66
.
23.
Szalai
,
R.
, and
Stépán
,
G.
,
2010
, “
Period Doubling Bifurcation and Center Manifold Reduction in a Time-Periodic and Time-Delayed Model of Machining
,”
J. Vib. Control
,
16
(
7–8
), pp.
1169
1187
.
24.
Moradi
,
H.
,
Movahhedy
,
M. R.
, and
Vossoughi
,
G.
,
2012
, “
Bifurcation Analysis of Milling Process With Tool Wear and Process Damping: Regenerative Chatter With Primary Resonance
,”
Nonlinear Dyn.
,
70
(
1
), pp.
481
509
.
25.
Moradi
,
H.
,
Vossoughi
,
G.
, and
Movahhedy
,
M. R.
,
2014
, “
Bifurcation Analysis of Nonlinear Milling Process With Tool Wear and Process Damping: Sub-Harmonic Resonance Under Regenerative Chatter
,”
Int. J. Mech. Sci.
,
85
, pp.
1
19
.
26.
Smith
,
S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
J. Eng. Ind.
,
113
(
2
), pp.
169
175
.
27.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.
28.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2009
,
Machining Dynamics
,
Springer US
,
Boston, MA
.
29.
Zhao
,
M. X.
, and
Balachandran
,
B.
,
2001
, “
Dynamics and Stability of Milling Process
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
2233
2248
.
30.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
.
31.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A Numerical and Experimental Investigation of Period-n Bifurcations in Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011003
.
32.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
.
33.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2017
, “
Mechanics and Multi-Regenerative Stability of Variable Pitch and Variable Helix Milling Tools Considering Runout
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
129
145
.
34.
Totis
,
G.
,
Albertelli
,
P.
,
Sortino
,
M.
, and
Monno
,
M.
,
2014
, “
Efficient Evaluation of Process Stability in Milling With Spindle Speed Variation by Using the Chebyshev Collocation Method
,”
J. Sound Vib.
,
333
(
3
), pp.
646
668
.
35.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer
,
New York
.
36.
Dombovari
,
Z.
,
Iglesias
,
A.
,
Zatarain
,
M.
, and
Insperger
,
T.
,
2011
, “
Prediction of Multiple Dominant Chatter Frequencies in Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
457
464
.
37.
Kline
,
W. A.
, and
DeVor
,
R. E.
,
1983
, “
The Effect of Runout on Cutting Geometry and Forces in End Milling
,”
Int. J. Mach. Tool Des. Res.
,
23
(
2–3
), pp.
123
140
.
38.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
New York
.
39.
Zhang
,
X.
,
Xiong
,
C.
,
Ding
,
Y.
,
Huang
,
X.
, and
Ding
,
H.
,
2014
, “
A Synthetical Stability Method for Cutting Parameter Optimization to Assure Surface Location Accuracy in Flexible Part Milling
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
1131
1147
.
40.
Dombovari
,
Z.
, and
Stepan
,
G.
,
2015
, “
On the Bistable Zone of Milling Processes
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
373
(
2051
), p.
20140409
.
41.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application
,
Wiley-Blackwell
,
Hoboken, NJ
, p.
562
.
42.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, eds.,
1995
,
Applied Nonlinear Dynamics, Wiley-VCH
,
Weinheim
,
Germany
.
43.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2017
, “
Surface Location Error and Surface Roughness for Period-N Milling Bifurcations
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061010
.
You do not currently have access to this content.