This review paper presents a comprehensive analysis of period-n (i.e., motion that repeats every n tooth periods) bifurcations in milling. Although period-n bifurcations in milling were only first reported experimentally in 1998, multiple researchers have since used both simulation and experiment to study their unique behavior in milling. To complement this work, the authors of this paper completed a three year study to answer the fundamental question “Is all chatter bad?”, where time-domain simulation and experiments were combined to: predict and verify the presence of period-2 to period-15 bifurcations; apply subharmonic (periodic) sampling strategies to the automated identification of bifurcation type; establish the sensitivity of bifurcation behavior to the system dynamics, including natural frequency and damping; and predict and verify surface location error (SLE) and surface roughness under both stable and period-2 bifurcation conditions. These results are summarized. To aid in parameter selection that yields period-n behavior, graphical tools including Poincaré maps, bifurcation diagrams, and stability maps are presented.

References

References
1.
Arnold
,
R. N.
,
1946
, “
The Mechanism of Tool Vibration in the Cutting of Steel
,”
Proc. Inst. Mech. Eng.
,
154
(
1
), pp. 261–284.
2.
Doi
,
S.
, and
Kato
,
S.
,
1956
, “
Chatter Vibration of Lathe Tools
,”
Trans. ASME
,
78
, 1956, p.
1127
.
3.
Tobias
,
S.
,
1958
, “
The Chatter of Lathe Tools Under Orthogonal Cutting Conditions
,”
Trans ASME
,
80
, pp.
1079
1085
.
4.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of Machine Tools against Self-Excited Vibrations in Machining
,”
ASME
, pp. 465–474.
5.
Tobias
,
S. A.
,
1965
,
Machine Tool Vibration
,
Wiley
,
New York
.
6.
Merritt
,
H. E.
,
1965
, “
Theory of Self-Excited Machine-Tool Chatter
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
447
454
.
7.
Tlusty
,
J.
, and
Polacek
,
M.
,
1968
, “
Experience With Analysing Stability of Machine Tool against Chatter
,”
9th MTDR Conference
, pp.
521
570
.
8.
Shridar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A General Formulation of the Milling Process Equation
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
317
324
.
9.
Hohn
,
R. E.
,
Shridar
,
R.
, and
Long
,
G. W.
,
1968
, “
A Stability Algorithm for a Special Case of the Milling Process
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
326
329
.
10.
Shridar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A Stability Algorithm for the General Milling Process
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
330
334
.
11.
Hanna
,
N. H.
, and
Tobias
,
S. A.
,
1974
, “
A Theory of Nonlinear Regenerative Chatter
,”
J. Eng. Ind.
,
96
(
1
), pp.
247
255
.
12.
Tlusty
,
J.
, and
Ismail
,
F.
,
1981
, “
Basic Non-Linearity in Machining Chatter
,”
Ann. CIRP
,
30
(
1
), pp.
299
304
.
13.
Tlusty
,
J.
, and
Ismail
,
F.
,
1983
, “
Special Aspects of Chatter in Milling
,”
ASME J. Vib., Stress Reliab. Des.
,
105
(
1
), pp.
24
32
.
14.
Tlusty
,
J.
,
1985
, “
Machine Dynamics
,”
Handbook of High-Speed Machining Technology
,
R. I.
,
King
, ed.,
Chapman and Hall
,
New York
, pp.
48
153
.
15.
Tlusty
,
J.
,
1986
, “
Dynamics of High-Speed Milling
,”
ASME J. Eng. Ind.
,
108
(
2
), pp.
59
67
.
16.
Minis
,
I.
, and
Yanusevsky
,
R.
,
1993
, “
A New Theoretical Approach for Prediction of Chatter in Milling
,”
ASME J. Eng. Ind.
,
115
(
1
), pp.
1
8
.
17.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
Ann. CIRP
,
44
(
1
), pp.
357
362
.
18.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
Ann. CIRP
,
53
(
2
), pp.
619
642
.
19.
Davies
,
M. A.
,
Dutterer
,
B. S.
,
Pratt
,
J. R.
, and
Schaut
,
A. J.
,
1998
, “
On the Dynamics of High-Speed Milling With Long, Slender Endmills
,”
Ann. CIRP
,
47
(
1
), pp.
55
60
.
20.
Moon
,
F. C.
, and
Kalmár-Nagy
,
T.
,
2001
, “
Nonlinear Models for Complex Dynamics in Cutting Materials
,”
Philos. Trans. R. Soc. London A
,
359
(
1781
), pp.
695
711
.
21.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B. S.
, and
Burns
,
T. J.
,
2000
, “
The Stability of Low Radial Immersion Milling
,”
Ann. CIRP
,
49
(
1
), pp.
37
40
.
22.
Moon
,
F. C.
,
1994
, “
Chaotic Dynamics and Fractals in Material Removal Processes
,”
Nonlinearity and Chaos in Engineering Dynamics
,
J.
Thompson
, and
S.
Bishop
, eds., pp
Wiley
,
New York
, pp.
25
37
.
23.
Bukkapatnam
,
S.
,
Lakhtakia
,
A.
, and
Kumara
,
S.
,
1995
, “
Analysis of Senor Signals Shows Turning on a Lathe Exhibits Low-Dimensional Chaos
,”
Phys. Rev. E
,
52
(
3
), pp.
2375
2387
.
24.
Stépán
,
G.
, and
Kalmár-Nagy
,
T.
,
1997
, “
Nonlinear Regenerative Machine Tool Vibrations
,”
ASME
Paper No. DETC 97/VIB-4021
.
25.
Nayfey
,
A.
,
Chin
,
C.
, and
Pratt
,
J.
,
1998
, “
Applications of Perturbation Methods to Tool Chatter Dynamics
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
, pp.
193
213
.
26.
Minis
,
I.
, and
Berger
,
B. S.
,
1998
, “
Modelling, Analysis, and Characterization of Machining Dynamics
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
, pp.
125
163
.
27.
Moon
,
F. C.
, and
Johnson
,
M.
,
1998
, “
Nonlinear Dynamics and Chaos in Manufacturing Processes
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
, pp.
3
32
.
28.
Smith
,
K. S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
J. Eng. Ind.
,
113
(
2
), pp.
169
175
.
29.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.
30.
Zhao
,
M. X.
, and
Balachandran
,
B.
,
2001
, “
Dynamics and Stability of Milling Process
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
2233
2248
.
31.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
,
2002
, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
217
225
.
32.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
,
2003
, “
Stability of Up-Milling and Down-Milling—Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
35
40
.
33.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
,
2003
, “
Stability of Up-Milling and down-Milling—Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
25
34
.
34.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
.
35.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Vibration Frequencies in High-Speed Milling Processes or a Positive Answer to Davies, Pratt, Dutterer, and Burns
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
481
487
.
36.
Mann
,
B. P.
,
Bayly
,
P. V.
,
Davies
,
M. A.
, and
Halley
,
J. E.
,
2004
, “
Limit Cycles, Bifurcations, and Accuracy of the Milling Process
,”
J. Sound Vib.
,
277
(
1–2
), pp.
31
48
.
37.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
38.
Govekar
,
E.
,
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
, and
Grabec
,
I.
,
2005
, “
On Stability and Dynamics of Milling at Small Radial Immersion. Annals of the
,”
CIRP
,
54
(
1
), pp.
357
362
.
39.
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2005
, “
On Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
769
781
.
40.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
22
30
.
41.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
31
36
.
42.
Altintas
,
Y.
,
Stepan
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
.
43.
Mann
,
B. P.
,
Garg
,
N. K.
,
Young
,
K. A.
, and
Helvey
,
A. M.
,
2005
, “
Milling Bifurcations From Structural Asymmetry and Nonlinear Regeneration
,”
Nonlinear Dyn.
,
42
(
4
), pp.
319
337
.
44.
Stépán
,
G.
,
Szalai
,
R.
,
Mann
,
B. P.
,
Bayly
,
P. V.
,
Insperger
,
T.
,
Gradisek
,
J.
, and
Govekar
,
E.
,
2005
, “
Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics, and Experiments
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
197
203
.
45.
Zatarain
,
M.
,
Muñoa
,
J.
,
Peigné
,
G.
, and
Insperger
,
T.
,
2006
, “
Analysis of the Influence of Mill Helix Angle on Chatter Stability
,”
Ann. CIRP
,
55
(
1
), pp.
365
368
.
46.
Insperger
,
T.
,
Munoa
,
J.
,
Zatarain
,
M. A.
, and
Peigné
,
G.
,
2006
, “
Unstable Islands in the Stability Chart of Milling Processes Due to the Helix Angle
,”
CIRP Second International Conference on High Performance Cutting
, Vancouver, BC, Canada, June 12–13.
47.
Patel
,
B. R.
,
Mann
,
B. P.
, and
Young
,
K. A.
,
2008
, “
Uncharted Islands of Chatter Instability in Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
124
134
.
48.
Bobrenkov
,
O. A.
,
Khasawneh
,
F. A.
,
Butcher
,
E. A.
, and
Mann
,
B. P.
,
2010
, “
Analysis of Milling Dynamics for Simultaneously Engaged Cutting Teeth
,”
J. Sound Vib.
,
329
(
5
), pp.
585
606
.
49.
Moradi
,
H.
,
Vossoughi
,
G.
, and
Movahhedy
,
M.
,
2014
, “
Bifurcation Analysis of Nonlinear Milling Process With Tool Wear and Process Damping: Sub-Harmonic Resonance Under Regenerative Chatter
,”
Int. J. Mech. Sci.
,
85
, pp.
1
19
.
50.
Cheng
,
C.
,
Wang
,
Z.
,
Hung
,
W.
,
Bukkapatnam
,
S.
, and
Komanduri
,
R.
,
2015
, “
Ultra-Precision Machining Process Dynamics and Surface Quality Monitoring
,”
Procedia Manuf.
,
1
, pp.
607
618
.
51.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2015
, “
The Extended Milling Bifurcation Diagram
,”
Procedia Manuf.
,
1
, pp.
466
476
.
52.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A Numerical and Experimental Investigation of Period-n Bifurcations in Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011003
.
53.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
Experimental Validation of Period-n Bifurcations in Milling
,”
Procedia Manuf.
,
5
, pp.
362
374
.
54.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
.
55.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2017
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
.
56.
Schmitz
,
T.
, and
Smith
,
K. S.
,
2009
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
57.
Kline
,
W.
,
DeVor
,
R.
, and
Shareef
,
I.
,
1982
, “
The Prediction of Surface Accuracy in End Milling
,”
J. Eng. Ind.
,
104
(
3
), pp.
272
278
.
58.
Kline
,
W.
,
DeVor
,
R.
, and
Lindberg
,
J.
,
1982
, “
The Prediction of Cutting Forces in End Milling With Application to Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
,
22
(
1
), pp.
7
22
.
59.
Tlusty
,
J.
,
1985
, “
Effect of End Milling Deflections on Accuracy
,”
Handbook of High Speed Machining Technology
,
R. I.
King
ed.,
Chapman and Hall
,
New York
, pp.
140
153
.
60.
Sutherland
,
J.
, and
DeVor
,
R.
,
1986
, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
J. Eng. Ind.
,
108
(
4
), pp.
269
279
.
61.
Montgomery
,
D.
, and
Altintas
,
Y.
,
1991
, “
Mechanism of Cutting Force and Surface Generation in Dynamic Milling
,”
J. Eng. Ind.
,
113
(
2
), pp.
160
168
.
62.
Altintas
,
Y.
,
Montgomery
,
D.
, and
Budak
,
E.
,
1992
, “
Dynamic Peripheral Milling of Flexible Structures
,”
J. Eng. Ind.
,
114
(
2
), pp.
137
145
.
63.
Tarng
,
Y.
,
Liao
,
C.
, and
Li
,
H.
,
1994
, “
A Mechanistic Model for Prediction of the Dynamics of Cutting Forces in Helical End Milling
,”
Int. J. Model. Simul.
,
14
(
2
), pp.
92
97
.
64.
Schmitz
,
T.
, and
Ziegert
,
J.
,
1999
, “
Examination of Surface Location Error Due to Phasing of Cutter Vibrations
,”
Precis. Eng.
,
23
(
1
), pp.
51
62
.
65.
Altintas
,
Y.
,
2000
,
Manufacturing Automation
,
Cambridge University Press
,
Cambridge, UK
.
66.
Schmitz
,
T.
,
Couey
,
J.
,
Marsh
,
E.
,
Mauntler
,
N.
, and
Hughes
,
D.
,
2007
, “
Runout Effects in Milling: Surface Finish, Surface Location Error, and Stability
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
841
851
.
67.
Yun
,
W.-S.
,
Ko
,
J.
,
Cho
,
D.-W.
, and
Ehmann
,
K.
,
2002
, “
Development of a Virtual Machining System, Part 2: Prediction and Analysis of a Machined Surface Error
,”
Int. J. Mach. Tools Manuf.
,
42
(
15
), pp.
1607
1615
.
68.
Schmitz
,
T.
, and
Mann
,
B.
,
2006
, “
Closed-Form Solutions for Surface Location Error in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1369
1377
.
69.
Dombovari
,
Z.
, and
Stépán
,
G.
,
2015
, “
On the Bistable Zone of Milling Processes
,”
Philos. Trans. R. Soc. A
,
373
(
2051
), p.
20140409
.
70.
Bachrathy
,
D.
,
Munoa
,
J.
, and
Stépán
,
G.
,
2016
, “
Experimental Validation of Appropriate Axial Immersions for Helical Mills
,”
Int. J. Adv. Manuf. Technol.
,
84
(5–8), pp.
1295
1302
.
71.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2017
, “
A Study of Milling Surface Quality During Period-2 Bifurcations
,”
Procedia Manuf.
,
10
, pp.
183
193
.
72.
Ransom
,
T.
,
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A New Tunable Dynamics Platform for Milling Experiments
,”
Precis. Eng.
,
44
, pp.
252
256
.
You do not currently have access to this content.