In this paper, both traditional Inconel 718 parts and WC/Inconel 718 composites were fabricated by selective laser melting (SLM). The size of WC particles was observed to play a crucial role in determining the microstructural evolution, distortion, and microcracks around the WC particles, which inturn also affected the effective mechanical properties of WC/Inconel 718 composites. The use of the 5.25 μm diameter WC particles resulted in fine dendrites at the interface between the WC particle and the Inconel 718 matrix. This was attributed to the formation of an annular heat flow and radially arranged temperature gradient directions around the WC particle that increased the contact area between the matrix and the particle, thereby also improving the interfacial bonding. A sound metallurgical bonding at the interface was achieved with negligible distortion and microcracks due to a relatively uniform temperature distribution and temperature gradient (4.7 × 103 °C/mm) at the interface. This also explains the generation of dense and smooth interfacial bonding, which yielded a low average friction coefficient of 0.21. The wear properties were improved since grooves and spallation were reduced with the decrease of the WC size.

References

References
1.
Kulawik
,
K.
,
Buffat
,
P. A.
,
Kruk
,
A.
,
Wusatowska-Sarnek
,
A. M.
, and
Czyrska-Filemonowicz
,
A.
,
2015
, “
Imaging and Characterization of γ′ and γ″ Nanoparticles in Inconel 718 by EDX Elemental Mapping and FIB–SEM Tomography
,”
Mater. Charact.
,
100
, pp.
74
80
.
2.
Sui
,
F.-L.
,
Xu
,
L.-X.
,
Chen
,
L.-Q.
, and
Liu
,
X.-H.
,
2011
, “
Processing Map for Hot Working of Inconel 718 Alloy
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
433
440
.
3.
Rezende
,
M. C.
,
Araújo
,
L. S.
,
Gabriel
,
S. B.
,
Dille
,
J.
, and
de Almeida
,
L. H.
,
2015
, “
Oxidation Assisted Intergranular Cracking Under Loading at Dynamic Strain Aging Temperatures in Inconel 718 Superalloy
,”
J. Alloy. Compd.
,
643
(
1
), pp.
S256
S259
.
4.
Wang
,
Y. C.
,
Shi
,
J.
,
Lu
,
S. Q.
, and
Wang
,
Y.
,
2017
, “
Selective Laser Melting of Graphene-Reinforced Inconel 718 Superalloy: Evaluation of Microstructure and Tensile Performance
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041005
.
5.
Niaki
,
F. A.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2016
, “
Parameter Inference Under Uncertainty in End-Milling Gamma'-Strengthened Difficult-to-Machine Alloy
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061014
.
6.
Zhao
,
L. G.
,
2011
, “
Modeling of Oxygen Diffusion along Grain Boundaries in a Nickel-Based Superalloy
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031002
.
7.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X. Y.
,
Chen
,
X. F.
, and
Zeng
,
X. Y.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloys Compd.
,
513
, pp.
518
523
.
8.
Ibrahim
,
I. A.
,
Mohamed
,
F. A.
, and
Lavernia
,
E. J.
,
1991
, “
Particulate Reinforced Metal Matrix Composite—A Review
,”
J. Mater. Sci.
,
26
(
5
), pp.
1137
1156
.
9.
Lambert
,
G. M.
, and
Baird
,
D. G.
,
2017
, “
Evaluating Rigid and Semiflexible Fiber Orientation Evolution Models in Simple Flows
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031012
.
10.
Zhang
,
B. C.
,
Bi
,
G. J.
,
Nai
,
S.
,
Sun
,
C.-N.
, and
Wei
,
J.
,
2016
, “
Microhardness and Microstructure Evolution of TiB2 Reinforced Inconel 625/TiB2 Composite Produced by Selective Laser Melting
,”
Opt. Laser Technol.
,
80
, pp.
186
195
.
11.
AlMangoura
,
B.
,
Grzesiakb
,
D.
, and
Yang
,
J.-M.
,
2016
, “
Selective Laser Melting of TiC Reinforced 316 L Stainless Steel Matrix Nanocomposites: Influence of Starting TiC Particle Size and Volume Content
,”
Mater. Des.
,
104
, pp.
141
151
.
12.
Hong
,
C.
,
Gu
,
D. D.
,
Dai
,
D. H.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
,
Zhong
,
M. L.
, and
Poprawe
,
R.
,
2013
, “
Laser Metal Deposition of TiC/Inconel 718 Composites With Tailored Interfacial Microstructures
,”
Opt. Laser Technol.
,
54
, pp.
98
109
.
13.
Rong
,
T.
,
Gu
,
D. D.
,
Shi
,
Q. M.
,
Cao
,
S. N.
, and
Xia
,
M. J.
,
2016
, “
Effects of Tailored Gradient Interface on Wear Properties of WC/Inconel 718 Composites Using Selective Laser Melting
,”
Surf. Coat. Technol.
,
307
(
Part A
), pp.
418
427
.
14.
Fortes Da Cruz
,
J.
,
Da Silva Botelho
,
T.
,
Lemaire-Caron
,
I.
,
Durand
,
A.-M.
, and
Messager
,
D.
,
2016
, “
Role of WS2, WS2+CrC and Bonded Coatings on Damage and Friction of Inconel 718 Flat Rough Surfaces at High Temperature
,”
Tribol. Int.
,
100
, pp.
430
440
.
15.
Bauri
,
R.
, and
Surappa
,
M. K.
,
2007
, “
Processing and Properties of Al–Li–SiCp Composites
,”
Sci. Technol. Adv. Mater.
,
8
(
6
), pp.
494
502
.
16.
Grasso
,
M.
,
Laguzza
,
V.
,
Semeraro
,
Q.
, and
Colosimo
,
B. M.
,
2017
, “
In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051001
.
17.
Fu
,
C. H.
, and
Guo
,
Y. B.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
18.
Kempen
,
K.
,
Vrancken
,
B.
,
Buls
,
S.
,
Thijs
,
L.
,
Humbeeck
,
J. V.
, and
Kruth
,
J. P.
,
2014
, “
Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061026
.
19.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J. P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061012
.
20.
Yan
,
C. Z.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.
21.
Qiu
,
C. L.
,
Adkins
,
N. J. E.
, and
Attallah
,
M. M.
,
2016
, “
Selective Laser Melting of Invar 36: Microstructure and Properties
,”
Acta Mater.
,
103
, pp.
382
395
.
22.
Luo
,
S. D.
,
Li
,
Q.
,
Tian
,
J.
,
Wang
,
C.
,
Yan
,
M.
,
Schaffer
,
G. B.
, and
Qian
,
M.
,
2013
, “
Self-Assembled, Aligned TiC Nanoplatelet-Reinforced Titanium Composites With Outstanding Compressive Properties
,”
Scr. Mater.
,
69
(
1
), pp.
29
32
.
23.
Ocelík
,
V.
,
Matthews
,
D.
, and
De Hosson
,
J. T. M.
,
2005
, “
Sliding Wear Resistance of Metal Matrix Composite Layers Prepared by High Power Laser
,”
Surf. Coat. Technol.
,
197
(
2–3
), pp.
303
315
.
24.
Tjong
,
S. C.
,
2007
, “
Novel Nanoparticle-Reinforced Metal Matrix Composites With Enhanced Mechanical Properties
,”
Adv. Eng. Mater.
,
9
(
8
), pp.
639
652
.
25.
Gu
,
D. D.
,
Hong
,
C.
,
Jia
,
Q. B.
,
Dai
,
D. H.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
,
Zhong
,
M. L.
, and
Poprawe
,
R.
,
2014
, “
Combined Strengthening of Multi-Phase and Graded Interface in Laser Additive Manufactured TiC/Inconel 718 Composites
,”
J. Phys. D: Appl. Phys.
,
47
(
4
), p.
045309
.
26.
Rong
,
T.
, and
Gu
,
D. D.
,
2016
, “
Formation of Novel Graded Interface and Its Function on Mechanical Properties of WC1-x Reinforced Inconel 718 Composites Processed by Selective Laser Melting
,”
J. Alloys Compd.
,
680
, pp.
333
342
.
27.
Jia
,
Q. B.
, and
Gu
,
D. D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of TiC/Inconel 718 Bulk-Form Nanocomposites: Densification, Microstructure, and Performance
,”
J. Mater. Res.
,
29
(
17
), pp.
1960
1969
.
28.
Shi
,
Q. M.
,
Gu
,
D. D.
,
Xia
,
M. J.
,
Cao
,
S. N.
, and
Rong
,
T.
,
2016
, “
Effects of Laser Processing Parameters on Thermal Behavior and Melting/Solidification Mechanism During Selective Laser Melting of TiC/Inconel 718 Composites
,”
Opt. Laser Technol.
,
84
, pp.
9
22
.
29.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
,
Ali
,
H.
, and
Karatas
,
C.
,
2016
, “
Laser Pulse Heating of Steel Mixing With WC Particles in a Irradiated Region
,”
Opt. Laser Technol.
,
86
, pp.
126
135
.
30.
Dai
,
K.
, and
Shaw
,
L.
,
2005
, “
Finite Element Analysis of the Effect of Volume Shrinkage During Laser Densification
,”
Acta Mater.
,
53
(
18
), pp.
4743
4754
.
31.
Moore
,
J. D.
,
Klemm
,
D.
,
Lindackers
,
D.
,
Grasemann
,
S.
,
Träger
,
R.
,
Eckert
,
J.
,
Löber
,
L.
,
Scudino
,
S.
,
Katter
,
M.
,
Barcza
,
A.
,
Skokov
,
K. P.
, and
Gutfleisch
,
O.
,
2013
, “
Selective Laser Melting of La(Fe,Co,Si)13 Geometries for Magnetic Refrigeration
,”
J. Appl. Phys.
,
114
(
4
), p.
043907
.
32.
Xia
,
M. J.
,
Gu
,
D. D.
,
Yu
,
G. Q.
,
Dai
,
D. H.
,
Chen
,
H. Y.
, and
Shi
,
Q. M.
,
2016
, “
Selective Laser Melting 3D Printing of Ni-Based Superalloy: Understanding Thermodynamic Mechanisms
,”
Sci. Bull.
,
61
(
13
), pp.
1013
1022
.
33.
Zargarian
,
A.
,
Esfahanian
,
M.
,
Kadkhodapour
,
J.
, and
Ziaei-Rad
,
S.
,
2016
, “
Numerical Simulation of the Fatigue Behavior of Additive Manufactured Titanium Porous Lattice Structures
,”
Mater. Sci. Eng. C
,
60
, pp.
339
347
.
34.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Boillat
,
E.
, and
Glardon
,
R.
,
2003
, “
Sintering of Commercially Pure Titanium Powder With a Nd:YAG Laser Source
,”
Acta Mater.
,
51
(
6
), pp.
1651
1662
.
35.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
You do not currently have access to this content.