The complexity in weld profile caused by abrupt change in polarity in square waveform welding is investigated through the development of a model capable to accurately predict weld profile. A semi-analytical model is conceived wherein characteristic attributes of a composite parabolic–elliptic function, which represent the weld profile, are obtained through nonlinear regression (NLR). The proposed model is demonstrated for its efficacy in the prediction of weld profile over a wide range of welding parameters, vis-à-vis, welding current, frequency, electrode negative (EN) ratio, and welding velocity. The investigation suggests that the center and outer cores of welding arc remains more active during positive and negative polarity, respectively, that leads to distinct macroscopic zones in weld cross section and thus, necessitates a composite profile for representation of weld profile. The intersection of the zones forms a metallurgical notch which the investigation offers a method to estimate and thus control. Unlike the convention continuous arc welding, the waveform arc welding caters welding at higher velocity without compromising the weld penetration and almost abolishing the metallurgical notch as well.

References

References
1.
Grist
,
F. J.
,
1982
, “
Square Wave Power Supply for Arc Welding
,” U.S. Patent No.
4,322,602
.https://patents.google.com/patent/US4322602
2.
Dos Santos
,
E. B.
,
Pistor
,
R.
, and
Gerlich
,
A. P.
,
2017
, “
Pulse Profile and Metal Transfer in Pulsed Gas Metal Arc Welding: Droplet Formation, Detachment and Velocity
,”
Sci. Technol. Weld. Joining
,
22
(
7
), pp.
627
641
.
3.
Pedrazzo
,
G.
,
Barone
,
C. A.
, and
Rutili
,
G.
,
2009
, “
AC/DC Generators With Waveform Control: Innovation in Submerged Arc Welding
,”
Weld. Int.
,
23
(
11
), pp.
839
845
.
4.
Choudhury
,
S.
,
Sharma
,
A.
,
Mohanty
,
U. K.
,
Kasai
,
R.
,
Komura
,
M.
,
Tanaka
,
M.
, and
Suga
,
T.
,
2017
, “
Mathematical Model of Complex Weld Penetration Profile: A Case of Square AC Waveform Arc Welding
,”
J. Manuf. Process.
,
30
, pp.
483
491
.
5.
Faria
,
J. P.
,
Miranda
,
H. D.
,
Motta
,
M. F.
,
Paiva
,
F. D.
, and
Pessoa
,
E. F.
,
2007
, “
Effect of Square-Wave AC GMAW on Weld Beam Geometry
,”
Weld. Int.
,
21
(
3
), pp.
212
219
.
6.
He
,
K.
,
Zhang
,
Z.
,
Xiao
,
S.
, and
Li
,
X.
,
2013
, “
Feature Extraction of AC Square Wave SAW Arc Characteristics Using Improved Hilbert–Huang Transformation and Energy Entropy
,”
Measurements
,
46
(
4
), pp.
1385
1392
.
7.
Mohammadijoo
,
M.
,
Kenny
,
S.
,
Collins
,
L.
,
Henein
,
H.
, and
Ivey
,
D. G.
,
2017
, “
Influence of Cold-Wire Tandem Submerged Arc Welding Parameters on Weld Geometry and Microhardness of Microalloyed Pipeline Steels
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
2249
2263
.
8.
Cao
,
Y.
,
Zhu
,
S.
,
Liang
,
X.
, and
Wang
,
W.
,
2011
, “
Overlapping Model of Beads and Curve Fitting of Bead Section for Rapid Manufacturing by Robotic MAG Welding Process
,”
Rob. Comput. Integr. Manuf.
,
27
(
3
), pp.
641
645
.
9.
Xiong
,
J.
,
Zhang
,
G.
,
Gao
,
H.
, and
Wu
,
L.
,
2013
, “
Modeling of Bead Section Profile and Overlapping Beads With Experimental Validation for Robotic GMAW-Based Rapid Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
29
(
2
), pp.
417
423
.
10.
Sharma
,
A.
,
Arora
,
N.
, and
Mishra
,
B. K.
,
2015
, “
Mathematical Model of Bead Profile in High Deposition Welds
,”
J. Mater. Process. Technol.
,
220
, pp.
65
75
.
11.
Zhang
,
Y. M.
,
Li
,
L., and
Kovacevic
,
R.
,
1997
, “
Dynamic Estimation of Full Penetration Using Geometry of Adjacent Weld Pools
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
631
643
.
12.
Liao
,
G. Y.
,
2003
, “
A Generic Algorithm Approach to Weld Pattern Optimization in Sheet Metal Assembly
,”
ASME
Paper No.
IMECE2003-41111.
13.
Park
,
J.
,
Kim
,
K. Y., and
Sohmshetty
,
R.
,
2015
, “
A Prediction Modeling Framework: Toward Integration of Noisy Manufacturing Data and Product Design
,”
ASME
Paper No.
DETC2015-46236.
14.
Doumanidis
,
C. C.
, and
Nikolaos
,
F.
,
1995
, “
Intelligent In-Process Optimization of Material Characteristics in Scan Welding
,” ASME International Mechanical Congress and Exposition, San Francisco, CA, Nov. 12–17.
15.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
(
2
), pp.
164
168
.
16.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Society Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.
17.
Pepin
,
J.
,
2009
, “
Effects of Submerged Arc Weld (SAW) Parameters on Bead Geometry and Notch-Toughness for X70 and X80 Linepipe Steels
,”
Master's thesis
, University of Alberta, Edmonton, AB.
18.
Yang
,
M.
,
Zheng
,
H.
,
Qi
,
B.
, and
Yang
,
Z.
,
2017
, “
Microstructure and Fatigue Property of Ti–6Al–4V by Ultrahigh Frequency Pulse Welding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041015
.
19.
Tong
,
H.
,
Ueyama
,
T.
, and
Ushio
,
M.
,
2004
, “
Study on Phenomena of Wire Melting and Bead Formation in AC Pulsed MIG Welding
,”
Q. J. Jpn. Weld. Soc.
,
22
(
3
), pp.
389
397
.
20.
Jindal
,
S.
,
Chhibber
,
R.
, and
Mehta
,
N. P.
,
2014
, “
Effect of Welding Parameters on Bead Profile, Microhardness and H2 Content in Submerged Arc Welding of High-Strength Low-Alloy Steel
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
228
(
1
), pp.
82
94
.
21.
Moinuddin
,
S. Q.
,
Kapil
,
A.
,
Kohama
,
K.
,
Sharma
,
A.
,
Ito
,
K.
, and
Tanaka
,
M.
,
2016
, “
On Process–Structure–Property Interconnection in Anti-Phase Synchronised Twin-Wire GMAW of Low Carbon Steel
,”
Sci. Technol. Weld. Joining
,
21
(
6
), pp.
452
459
.
You do not currently have access to this content.