The rapid development of modern science and technology brings with it a high demand for manufacturing quality. The surface integrity of a machined part is a critical factor which needs to be considered in the selection of the appropriate machining processes. Surface integrity is also tightly linked with tool wear. Tool wear is one of the most significant and necessary parameters to be considered for machining sustainability. By monitoring and predicting tool wear, it is possible to improve sustainability by reducing the scrap rate due to poor surface integrity. In this work, data-dependent systems (DDS), a stochastic modeling and analysis technique, was applied to study the power of spindle motor during a hard milling operation. The objective was to correlate the spindle power to tool wear conditions using DDS analysis. The spindle power was monitored, and the time series trends were decomposed to study the frequency variation with different severities of tool wear conditions and processing parameters. Analysis of variance (ANOVA) was also used to determine factors significant to the power by a spindle motor. Experiments indicate that low-level frequency of spindle power is correlated with the amount of tool wear, cutting speed, and feed per tooth. The results suggest that effective tool wear monitoring may be achieved by focusing on low-level frequencies highlighted by DDS methodology.

References

References
1.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.
2.
Pavel
,
R.
,
Marinescu
,
I.
,
Deis
,
M.
, and
Pillar
,
J.
,
2005
, “
Effect of Tool Wear on Surface Finish for a Case of Continuous and Interrupted Hard Turning
,”
J. Mater. Process. Technol.
,
170
(
1–2
), pp.
341
349
.
3.
Che-Haron
,
C. H.
, and
Jawaid
,
A.
,
2005
, “
The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V
,”
J. Mater. Process. Technol.
,
166
(
2
), pp.
188
192
.
4.
Poulachon
,
G.
,
Bandyopadhyay
,
B. P.
,
Jawahir
,
I. S.
,
Pheulpin
,
S.
, and
Seguin
,
E.
,
2003
, “
The Influence of the Microstructure of Hardened Tool Steel Workpiece on the Wear of PCBN Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
43
(
2
), pp.
139
144
.
5.
Tansel
,
I. N.
,
Arkan
,
T. T.
,
Bao
,
W. Y.
,
Mahendrakar
,
N.
,
Shisler
,
B.
,
Smith
,
D.
, and
McCool
,
M.
,
2000
, “
Tool Wear Estimation in Micro-Machining—Part I: Tool Usage–Cutting Force Relationship
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
599
608
.
6.
Scheffer
,
C.
,
Kratz
,
H.
,
Heyns
,
P. S.
, and
Klocke
,
F.
,
2003
, “
Development of a Tool Wear-Monitoring System for Hard Turning
,”
Int. J. Mach. Tools Manuf.
,
43
(
10
), pp.
973
985
.
7.
Ghosh
,
N.
,
Ravi
,
Y. B.
,
Patra
,
A.
,
Mukhopadhyay
,
S.
,
Paul
,
S.
,
Mohanty
,
A. R.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Estimation of Tool Wear During CNC Milling Using Neural Network-Based Sensor Fusion
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
466
479
.
8.
Sealy
,
M. P.
,
Liu
,
Z. Y.
,
Zhang
,
D.
,
Guo
,
Y. B.
, and
Liu
,
Z. Q.
,
2016
, “
Energy Consumption and Modeling in Precision Hard Milling
,”
J. Cleaner Prod.
,
135
, pp.
1591
1601
.
9.
Sick
,
B.
,
2002
, “
On-Line and Indirect Tool Wear Monitoring in Turning With Artificial Neural Networks: A Review of More Than a Decade of Research
,”
Mech. Syst. Signal Process.
,
16
(
4
), pp.
487
546
.
10.
Byrne
,
G.
,
Dornfeld
,
D.
,
Inasaki
,
I.
,
Ketteler
,
G.
,
König
,
W.
, and
Teti
,
R.
,
1995
, “
Tool Condition Monitoring (TCM)—The Status of Research and Industrial Application
,”
CIRP Ann. Manuf. Technol.
,
44
(
2
), pp.
541
567
.
11.
Yoon
,
H. S.
,
Moon
,
J. S.
,
Pham
,
M. Q.
,
Lee
,
G. B.
, and
Ahn
,
S. H.
,
2013
, “
Control of Machining Parameters for Energy and Cost Savings in Micro-Scale Drilling of PCBs
,”
J. Cleaner Prod.
,
54
, pp.
41
48
.
12.
Cuppini
,
D.
,
D'errico
,
G.
, and
Rutelli
,
G.
,
1990
, “
Tool Wear Monitoring Based on Cutting Power Measurement
,”
Wear
,
139
(
2
), pp.
303
311
.
13.
Yoon
,
H. S.
,
Lee
,
J. Y.
,
Kim
,
M. S.
, and
Ahn
,
S. H.
,
2014
, “
Empirical Power-Consumption Model for Material Removal in Three-Axis Milling
,”
J. Cleaner Prod.
,
78
, pp.
54
62
.
14.
Axinte
,
D.
, and
Gindy
,
N.
,
2004
, “
Assessment of the Effectiveness of a Spindle Power Signal for Tool Condition Monitoring in Machining Processes
,”
Int. J. Prod. Res.
,
42
(
13
), pp.
2679
2691
.
15.
Kim
,
H. Y.
,
Ahn
,
J. H.
,
Kim
,
S. H.
, and
Takata
,
S.
,
2002
, “
Real-Time Drill Wear Estimation Based on Spindle Motor Power
,”
J. Mater. Process. Technol.
,
124
(
3
), pp.
267
273
.
16.
Shao
,
H.
,
Wang
,
H. L.
, and
Zhao
,
X. M.
,
2004
, “
A Cutting Power Model for Tool Wear Monitoring in Milling
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1503
1509
.
17.
Williams
,
R. E.
,
1993
, “
Investigation of the Abrasive Flow Machining Process and Development of a Monitoring Strategy Using Acoustic Emission
,”
Ph.D. dissertation
, University of Nebraska-Lincoln, Lincoln, NE.https://digitalcommons.unl.edu/dissertations/AAI9333989/
18.
Pandit
,
S. M.
, and
Wu
,
S. M.
,
1975
, “
Unique Estimates of the Parameters of a Continuous Stationary Stochastic Process
,”
Biometrika
,
62
(
2
), pp.
497
501
.
19.
Astakhov
,
V. P.
,
2004
, “
The Assessment of Cutting Tool Wear
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
637
647
.
20.
Liu
,
Z. Y.
,
Guo
,
Y. B.
,
Sealy
,
M. P.
, and
Liu
,
Z. Q.
,
2016
, “
Energy Consumption and Process Sustainability of Hard Milling With Tool Wear Progression
,”
J. Mater. Process. Technol.
,
229
, pp.
305
312
.
21.
Sealy
,
M. P.
,
Liu
,
Z. Y.
,
Guo
,
Y. B.
, and
Liu
,
Z. Q.
,
2016
, “
Energy Based Process Signature for Surface Integrity in Hard Milling
,”
J. Mater. Process. Technol.
,
238
, pp.
284
289
.
22.
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1992
, “
Stochastic Modeling and Analysis of Abrasive Flow Machining
,”
J. Eng. Ind.
,
114
(
1
), pp.
74
81
.
23.
Pandit
,
S. M.
,
Rajurkar
,
K. P.
, and
Shaw
,
M. C.
,
1980
, “
Data Dependent Systems Approach to EDM Process Modeling From Surface Roughness Profiles
,”
CIRP Ann. Manuf. Technol.
,
29
(
1
), pp.
107
112
.
24.
Williams
,
R. E.
, and
Melton
,
V. L.
,
1998
, “
Abrasive Flow Finishing of Stereolithography Prototypes
,”
Rapid Prototyping J.
,
4
(
2
), pp.
56
67
.
25.
Wu
,
J.
,
Cong
,
W.
,
Williams
,
R. E.
, and
Pei
,
Z.
,
2011
, “
Dynamic Process Modeling for Rotary Ultrasonic Machining of Alumina
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041012
.
26.
Pandit
,
S. M.
,
1991
,
Modal and Spectrum Analysis: Data Dependent Systems in State Space
,
Wiley-Interscience
,
New York
.
27.
Rajurkar
,
K. P.
, and
Nissen
,
J. L.
,
1985
, “
Data-Dependent Systems Approach to Short-Term Load Forecasting
,”
IEEE Trans. Syst., Man, Cybern.
,
15
(
4
), pp.
532
536
.
28.
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1989
, “
Metal Removal and Surface Finish Characteristics in Abrasive Flow Machining
,”
Mechanics of Deburring and Surface Finishing Processes, Winter Annual Meet
, Vol. 38,
R. J.
Stango
and
P. R.
Fitzpatrick
, eds., pp.
93
106
.
29.
Sathyanarayanan
,
G.
,
Pandit
,
S. M.
, and
Lindsay
,
R. P.
,
1985
, “
Two Wavelength Characteristic Grain Model for Grinding Wheel
,”
CIRP Ann. Manuf. Technol.
,
34
(
1
), pp.
299
303
.
30.
Voss
,
M. S.
, and
Feng
,
X.
,
2002
, “
ARMA Model Selection Using Particle Swarm Optimization and AIC Criteria
,”
IFAC Proc. Volumes
,
35
(
1
), pp.
349
354
.
31.
Constantinides
,
N.
, and
Bennett
,
S.
,
1987
, “
An Investigation of Methods for the on-Line Estimation of Tool Wear
,”
Int. J. Mach. Tools Manuf.
,
27
(
2
), pp.
225
237
.
32.
Kopač
,
J.
, and
Šali
,
S.
,
2001
, “
Tool Wear Monitoring During the Turning Process
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
312
316
.
You do not currently have access to this content.