Laser-assisted laser peen forming (LALPF) is proposed as a hybrid process to combine laser heating and laser peening to improve the bending capability of laser peen forming (LPF) effectively. To predict LALPF-induced bending deformation and mechanism of bending capability improvement, a sequentially coupled modeling approach is established by integrating three models, i.e., a thermoelastic-plastic model to predict the temperature, a dynamic model to obtain the eigenstrain of laser shock, and an eigenstrain model to predict the bending deformation. The effects of temperature, thermal stress, and thermal plastic strain of laser heating and the coupling effects on the bending deformation were investigated. The results show that the interaction of temperature and thermal stress are the dominant factors contributing to the improvement of bending capability.

References

References
1.
Torres
,
M. A. S.
, and
Voorwald
,
H. J. C.
,
2002
, “
An Evaluation of Shot Peening, Residual Stress and Stress Relaxation on the Fatigue Life of AISI 4340 Steel
,”
Int. J. Fatigue
,
24
(
8
), pp.
877
886
.
2.
Zhang
,
X. C.
,
Zhang
,
Y. K.
,
Lu
,
J. Z.
,
Xuan
,
F. Z.
,
Wang
,
Z. D.
, and
Tu
,
S. T.
,
2010
, “
Improvement of Fatigue Life of Ti–6Al–4V Alloy by Laser Shock Peening
,”
Mater. Sci. Eng.: A
,
527
(
15
), pp.
3411
3415
.
3.
Hu
,
Y.
,
Luo
,
M.
, and
Yao
,
Z.
,
2016
, “
Increasing the Capability of Laser Peen Forming to Bend Titanium Alloy Sheets With Laser-Assisted Local Heating
,”
Mater. Des.
,
90
, pp.
364
372
.
4.
Tanveer
,
A.
,
Marla
,
D.
, and
Kapoor
,
S. G.
,
2017
, “
A Thermal Model to Predict Tool Temperature in Machining of Ti–6Al–4V Alloy With an Atomization-Based Cutting Fluid Spray System
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071016
.
5.
Lu
,
L.
,
Guo
,
P.
, and
Pan
,
Y.
,
2017
, “
Magnetic-Field-Assisted Projection Stereolithography for Three-Dimensional Printing of Smart Structures
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071008
.
6.
Mark
,
A.
,
Xu
,
Y.
, and
Gou
,
J.
,
2016
, “
Deposition Thickness Modeling and Parameter Identification for a Spray-Assisted Vacuum Filtration Process in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041002
.
7.
Dong
,
X.
, and
Shin
,
Y. C.
,
2015
, “
Multiscale Finite Element Modeling of Alumina Ceramics Undergoing Laser-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011004
.
8.
Kumar
,
M.
,
Melkote
,
S.
, and
Lahoti
,
G.
,
2011
, “
Laser-Assisted Microgrinding of Ceramics
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
367
370
.
9.
Westkämper
,
E.
,
1995
, “
Grinding Assisted by Nd:YAG Lasers
,”
CIRP Ann.-Manuf. Technol.
,
44
(
1
), pp.
317
320
.
10.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2007
, “
Laser Assisted Incremental Forming: Formability and Accuracy Improvement
,”
CIRP Ann.-Manuf. Technol.
,
56
(
1
), pp.
273
276
.
11.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2008
, “
Improved SPIF Performance Through Dynamic Local Heating
,”
Int. J. Mach. Tools Manuf.
,
48
(
5
), pp.
543
549
.
12.
Gisario
,
A.
,
Barletta
,
M.
,
Conti
,
C.
, and
Guarino
,
S.
,
2011
, “
Springback Control in Sheet Metal Bending by Laser-Assisted Bending: Experimental Analysis, Empirical and Neural Network Modelling
,”
Opt. Lasers Eng.
,
49
(
12
), pp.
1372
1383
.
13.
Shi
,
Y.
,
Shen
,
H.
,
Yao
,
Z.
, and
Hu
,
J.
,
2007
, “
An Analytical Model Based on the Similarity in Temperature Distributions in Laser Forming
,”
Opt. Lasers Eng.
,
45
(
1
), pp.
83
87
.
14.
Ji
,
Z.
, and
Wu
,
S.
,
1998
, “
FEM Simulation of the Temperature Field During the Laser Forming of Sheet Metal
,”
J. Mater. Process. Technol.
,
74
(
1–3
), pp.
89
95
.
15.
Shen
,
H.
,
Yao
,
Z.
,
Shi
,
Y.
, and
Hu
,
J.
,
2007
, “
The Simulation of Temperature Field in the Laser Forming of Steel Plates
,”
Int. J. Modell. Identif. Control
,
2
(
3
), pp.
241
249
.
16.
Wang
,
H.
,
Zhang
,
Y.
, and
Chen
,
K.
,
2016
, “
Modeling of Temperature Distribution in Laser Welding of Lapped Martensitic Steel M1500 and Softening Estimation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111006
.
17.
Shen
,
H.
,
Shi
,
Y.
, and
Yao
,
Z.
,
2006
, “
Numerical Simulation of the Laser Forming of Plates Using Two Simultaneous Scans
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
239
245
.
18.
Shi
,
B.
,
Attia
,
H.
,
Vargas
,
R.
, and
Tavakoli
,
S.
,
2008
, “
Numerical and Experimental Investigation of Laser-Assisted Machining of Inconel 718
,”
Mach. Sci. Technol.
,
12
(
4
), pp.
498
513
.
19.
Gisario
,
A.
,
Mehrpouya
,
M.
,
Venettacci
,
S.
, and
Barletta
,
M.
, 2017, “
Laser-Assisted Bending of Titanium Grade-2 Sheets: Experimental Analysis and Numerical Simulation
,”
Opt. Lasers Eng.
,
92
, pp. 110–119.
20.
Mohammadi
,
A.
,
Vanhove
,
H.
,
Van Bael
,
A.
, and
Duflou
,
J. R.
,
2016
, “
Towards Accuracy Improvement in Single Point Incremental Forming of Shallow Parts Formed Under Laser Assisted Conditions
,”
Int. J. Mater. Form.
,
9
(
3
), pp.
339
351
.
21.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Thermal and Mechanical Modeling Analysis of Laser-Assisted Micro-Milling of Difficult-to-Machine Alloys
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
601
613
.
22.
Sagisaka
,
Y.
,
Kamiya
,
M.
,
Matsuda
,
M.
, and
Ohta
,
Y.
,
2010
, “
Thin-Sheet-Metal Bending by Laser Peen Forming With Femtosecond Laser
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2304
2309
.
23.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
,
Tollier
,
L.
, and
Bartnicki
,
E.
,
1997
, “
Shock Waves From a Water-Confined Laser-Generated Plasma
,”
J. Appl. Phys.
,
82
(
6
), pp.
2826
2832
.
24.
Yang
,
J.
,
Sun
,
S.
,
Brandt
,
M.
, and
Yan
,
W.
,
2010
, “
Experimental Investigation and 3D Finite Element Prediction of the Heat Affected Zone During Laser Assisted Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2215
2222
.
25.
Shen
,
H.-S.
,
2002
, “
Nonlinear Bending Response of Functionally Graded Plates Subjected to Transverse Loads and in Thermal Environments
,”
Int. J. Mech. Sci.
,
44
(
3
), pp.
561
584
.
26.
Yang
,
Y. C.
, and
Chang
,
E.
,
2001
, “
Influence of Residual Stress on Bonding Strength and Fracture of Plasma-Sprayed Hydroxyapatite Coatings on Ti–6Al–4V Substrate
,”
Biomaterials
,
22
(
13
), pp.
1827
1836
.
27.
Umbrello
,
D.
, 2008, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
196
(1–3), pp. 79–87.
28.
Hu
,
Y.
, and
Grandhi
,
R. V.
,
2012
, “
Efficient Numerical Prediction of Residual Stress and Deformation for Large-Scale Laser Shock Processing Using the Eigenstrain Methodology
,”
Surf. Coat. Technol.
,
206
(
15
), pp.
3374
3385
.
29.
Hu
,
Y.
,
Han
,
Y.
,
Yao
,
Z.
, and
Hu
,
J.
,
2010
, “
Three-Dimensional Numerical Simulation and Experimental Study of Sheet Metal Bending by Laser Peen Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061001
.
30.
Lauwers
,
B.
,
Klocke
,
F.
,
Klink
,
A.
,
Tekkaya
,
A. E.
,
Neugebauer
,
R.
, and
Mcintosh
,
D.
,
2014
, “
Hybrid Processes in Manufacturing
,”
CIRP Ann.-Manuf. Technol.
,
63
(
2
), pp.
561
583
.
You do not currently have access to this content.