Multilayered ultrasonic welding (USW) is widely used in joining of electrodes or tabs in lithium-ion batteries. To achieve quality joints and enhance the welding process robustness, an improved understanding of the joint formation is highly desirable. In this paper, USW of four-layered Ni-coated Cu is studied to investigate the joint formation at a single interface and joint propagation from interface to interface under both ambient and preheated conditions. The results indicate that joint formation involves three major mechanisms: Ni–Ni bonding with minimal mechanical interlocking, Ni–Ni bonding with moderate mechanical interlocking, and a combination of Ni–Ni bonding, Cu–Cu bonding, and severe mechanical interlocking. Results also show that joints propagate from the interface close to the sonotrode side to that close to the anvil side. It is further observed that the joint formation can be accelerated and the joint strength can be improved with process preheating, especially at the interface closest to the anvil. The effect of preheating is most significant during the early stage of the process, and diminishes as process progresses. The favorable effects of preheating improve the robustness of multilayered USW.

References

1.
De Vries
,
E.
,
2004
, “
Mechanics and Mechanisms of Ultrasonic Metal Welding
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
2.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2008
, “
Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects
,”
Mech. Mater.
,
40
(
12
), pp.
982
1000
.
3.
Elangovan
,
S.
,
Semeer
,
S.
, and
Prakasan
,
K.
,
2009
, “
Temperature and Stress Distribution in Ultrasonic Metal Welding—An FEA-Based Study
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1143
1150
.
4.
Bakavos
,
D.
, and
Prangnell
,
P. B.
,
2010
, “
Mechanisms of Joint and Microstructure Formation in High Power Ultrasonic Spot Welding 6111 Aluminium Automotive Sheet
,”
Mater. Sci. Eng., A
,
527
(
23
), pp.
6320
6334
.
5.
Zhang
,
C.
, and
Li
,
L.
,
2009
, “
A Coupled Thermal-Mechanical Analysis of Ultrasonic Bonding Mechanics
,”
Metall. Mater. Trans. B
,
40
(
2
), pp.
196
207
.
6.
Lee
,
D.
,
Kannatey-Asibu
,
E.
, and
Cai
,
W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.
7.
Lee
,
S. S.
,
Kim
,
H. T.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2010
, “
Joining Technologies for Automotive Lithium-Ion Battery Manufacturing: A Review
,”
ASME
Paper No. MSEC2010-34168.
8.
Wu
,
X.
,
Liu
,
T.
, and
Cai
,
W.
,
2015
, “
Microstructure, Welding Mechanism, and Failure of Al/Cu Ultrasonic Welds
,”
J. Manuf. Processes
,
20
, pp.
321
31
.
9.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2015
, “
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031016
.
10.
Lee
,
S. S.
,
Kim
,
H. T.
,
Hu
,
S. J.
,
Cai
,
W. W.
,
Abell
,
J. A.
, and
Li
,
J.
,
2013
, “
Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021004
.
11.
Zhang
,
C. Q.
,
Robson
,
J. D.
, and
Prangnell
,
P. B.
,
2016
, “
Dissimilar Ultrasonic Spot Welding of Aerospace Aluminum Alloy AA2139 to Titanium Alloy TiAl6V4
,”
J. Mater. Process. Technol.
,
231
, pp.
382
388
.
12.
Watanabe
,
T.
,
Sakuyama
,
H.
, and
Yanagisawa
,
A.
,
2009
, “
Ultrasonic Welding Between Mild Steel Sheet and Al–Mg Alloy Sheet
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5475
5480
.
13.
Haddadi
,
F.
,
2015
, “
Rapid Intermetallic Growth Under High Strain Rate Deformation During High Power Ultrasonic Spot Welding of Aluminium to Steel
,”
Mater. Des.
,
66
, pp.
459
472
.
14.
Kreye
,
H.
,
1977
, “
Melting Phenomena in Solid State Welding Processes
,”
Weld. J.
,
56
(
5
), pp.
154
158
.http://files.aws.org/wj/supplement/WJ_1977_05_s154.pdf
15.
Gunduz
,
I. E.
,
Ando
,
T.
,
Shattuck
,
E.
,
Wong
,
P. Y.
, and
Doumanidis
,
C. C.
,
2005
, “
Enhanced Diffusion and Phase Transformations During Ultrasonic Welding of Zinc and Aluminum
,”
Scr. Mater.
,
52
(
9
), pp.
939
943
.
16.
Kannatey-Asibu
,
E.
,
1991
, “
Thermal Aspects of the Split-Beam Laser Welding Concept
,”
J. Eng. Mater. Technol.
,
113
(
2
), pp.
215
221
.
17.
Liu
,
Y. N.
, and
Kannatey-Asibu
,
E.
, Jr.,
1993
,
Characteristics of Elliptical Laser Beam Preheating During Laser Welding
, Vol.
64
,
American Society of Mechanical Engineers
,
New York
, pp.
895
905
.
18.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
,
1998
, “
Transient Thermal Response of a Rotating Cylindrical Silicon Nitride Workpiece Subjected to a Translating Laser Heat Source—Part I: Comparison of Surface Temperature Measurements With Theoretical Results
,”
ASME Trans. J. Heat Transfer
,
120
(
4
), pp.
899
906
.
19.
Özler
,
L.
,
Inan
,
A.
, and
Özel
,
C.
,
2001
, “
Theoretical and Experimental Determination of Tool Life in Hot Machining of Austenitic Manganese Steel
,”
Intl. J. Mach. Tools Manuf.
,
41
(
2
), pp.
163
172
.
20.
Dumitrescu
,
P.
,
Koshy
,
P.
,
Stenekes
,
J.
, and
Elbestawi
,
M. A.
,
2006
, “
High-Power Diode Laser Assisted Hard Turning of AISI D2 Tool Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
2009
2016
.
21.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2015
, “
Thermal Mechanical Modeling of the Plunge Stage During Friction-Stir Welding of Dissimilar Al 6061 to TRIP 780 Steel
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051017
.
22.
Sharma
,
S. R.
,
Ma
,
Z. Y.
, and
Mishra
,
R. S.
,
2004
, “
Effect of Friction Stir Processing on Fatigue Behavior of A356 Alloy
,”
Scr. Mater.
,
51
(
3
), pp.
237
241
.
23.
Yang
,
J.
, and
Cao
,
B.
,
2015
, “
Investigation of Resistance Heat Assisted Ultrasonic Welding of 6061 Aluminum Alloys to Pure Copper
,”
Mater. Des.
,
74
, pp.
19
24
.
24.
Haddadi
,
F.
, and
Abu-Farha
,
F.
,
2015
, “
Microstructural and Mechanical Performance of Aluminium to Steel High Power Ultrasonic Spot Welding
,”
J. Mater. Process. Technol.
,
225
, pp.
262
274
.
25.
Kim
,
T.
,
Yum
,
J.
,
Hu
,
S. J.
,
Spicer
,
J.
, and
Abell
,
J.
,
2011
, “
Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
17
20
.
26.
Xi
,
L.
,
Banu
,
M.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Abell
,
J.
,
2017
, “
Performance Prediction for Ultrasonically Welded Dissimilar Materials Joints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011008
.
27.
Lin
,
P. C.
, and
Pan
,
J.
,
2008
, “
Closed-Form Structural Stress and Stress Intensity Factor Solutions for Spot Welds in Commonly Used Specimens
,”
Eng. Fract. Mech.
,
75
(
18
), pp.
5187
5206
.
28.
Somekawa
,
H.
,
Watanabe
,
H.
,
Mukai
,
T.
, and
Higashi
,
K.
,
2003
, “
Low Temperature Diffusion Bonding in a Superplastic AZ31 Magnesium Alloy
,”
Scr. Mater.
,
48
(
9
), pp.
1249
1254
.
29.
Chen
,
S.
,
Ke
,
F.
,
Zhou
,
M.
, and
Bai
,
Y.
,
2007
, “
Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding Between Cu and Al
,”
Acta Mater.
,
55
(
9
), pp.
3169
3175
.
You do not currently have access to this content.