In five-axis milling process, the tool path generated by a commercial software seldom takes the dynamics of the machining process into account. The neglect of process dynamics may lead to milling chatter, which causes overcut, quick tool wear, etc., and thus damages workpiece surface and shortens tool life. This motivates us to consider dynamic constraints in the tool path generation. Tool orientation variations in five-axis ball-end milling influence chatter stability and surface location error (SLE) due to the varying tool-workpiece immersion area and cutting force, which inversely provides us a feasible and flexible way to suppress chatter and SLE. However, tool orientations adjustment for suppression of chatter and SLE may cause drastic changes of the tool orientations and affects surface quality. The challenge is to strike a balance between the smooth tool orientations and suppression of chatter and SLE. To overcome the challenge, this paper presents a minimax optimization approach for planning tool orientations. The optimization objective is to obtain smooth tool orientations, by minimizing the maximum variation of the rotational angles between adjacent cutter locations, with constraints of chatter-free and SLE threshold. A dedicated designed ball-end milling experiment is conducted to validate the proposed approach. The work provides new insight into the tool path generation for ball-end milling of sculpture surface; also it would be helpful to decision-making for process parameters optimization in practical complex parts milling operations at shop floor.

References

References
1.
Lee
,
C. M.
,
Kim
,
S. W.
,
Lee
,
Y. H.
, and
Lee
,
D. W.
,
2004
, “
The Optimal Cutter Orientation in Ball End Milling of Cantilever-Shaped Thin Plate
,”
J. Mater. Process. Technol.
,
153–154
, pp.
900
906
.
2.
Wan
,
M.
,
Zhang
,
W.
,
Qiu
,
K.
,
Gao
,
T.
, and
Yang
,
Y.
,
2005
, “
Numerical Prediction of Static Form Errors in Peripheral Milling of Thin-Walled Workpieces With Irregular Meshes
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), p.
13
.
3.
Smith
,
S.
,
Wilhelm
,
R.
,
Dutterer
,
B.
,
Cherukuri
,
H.
, and
Goel
,
G.
,
2012
, “
Sacrificial Structure Preforms for Thin Part Machining
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
379
382
.
4.
Koike
,
Y.
,
Matsubara
,
A.
, and
Yamaji
,
I.
,
2013
, “
Design Method of Material Removal Process for Minimizing Workpiece Displacement at Cutting Point
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
419
422
.
5.
Layegh K
,
S. E.
,
Yigit
,
I. E.
, and
Lazoglu
,
I.
,
2015
, “
Analysis of Tool Orientation for 5-Axis Ball-End Milling of Flexible Parts
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
97
100
.
6.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
.
7.
Prat
,
D.
,
Fromentin
,
G.
,
Poulachon
,
G.
, and
Duc
,
E.
,
2016
, “
Modeling and Analysis of Five-Axis Milling Configurations and Titanium Alloy Surface Topography
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061006
.
8.
Zhang
,
X.-M.
,
Zhang
,
D.
,
Cao
,
L.
,
Huang
,
T.
,
Leopold
,
J.
, and
Ding
,
H.
,
2017
, “
Minimax Optimization Strategy for Process Parameters Planning: Toward Interference-Free Between Tool and Flexible Workpiece in Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051010
.
9.
Yan
,
R.
,
Li
,
H.
,
Peng
,
F.
,
Tang
,
X.
,
Xu
,
J.
, and
Zeng
,
H.
,
2017
, “
Stability Prediction and Step Optimization of Trochoidal Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091006
.
10.
Comak
,
A.
,
Ozsahin
,
O.
, and
Altintas
,
Y.
,
2016
, “
Stability of Milling Operations With Asymmetric Cutter Dynamics in Rotating Coordinates
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081004
.
11.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2017
, “
A Numerical and Experimental Investigation of Period-n Bifurcations in Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011003
.
12.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2017
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
.
13.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2017
, “
Modeling of Dynamic Instability Via Segmented Cutting Coefficients and Chatter Onset Detection in High-Speed Micromilling of Ti6al4v
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051005
.
14.
Altintas
,
Y.
,
Shamoto
,
E.
,
Lee
,
P.
, and
Budak
,
E.
,
1999
, “
Analytical Prediction of Stability Lobes in Ball-End-Milling
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
586
592
.
15.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
.
16.
Shamoto
,
E.
, and
Akazawa
,
K.
,
2009
, “
Analytical Prediction of Chatter Stability in Ball End Milling With Tool Inclination
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
351
354
.
17.
Budak
,
E.
,
Ozturk
,
E.
, and
Tunc
,
L. T.
,
2009
, “
Modeling and Simulation of 5-Axis Milling Processes
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
347
350
.
18.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,” ASME
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021003
.
19.
Insperger
,
T.
,
Gradišek
,
J.
,
Kalveram
,
M.
,
Stépán
,
G.
,
Winert
,
K.
, and
Govekar
,
E.
,
2006
, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), p.
913
.
20.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2017
, “
Surface Location Error and Surface Roughness for Period-n Milling Bifurcations
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061010
.
21.
Kiran
,
K.
,
Rubeo
,
M.
,
Kayacan
,
M. C.
, and
Schmitz
,
T.
,
2017
, “
Two Degree of Freedom Frequency Domain Surface Location Error Prediction
,”
Precis. Eng.
,
48
, pp.
234
242
.
22.
Sun
,
C.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
.
23.
Huang
,
T.
,
Zhang
,
X.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
An Efficient Linear Approximation of Acceleration Method for Milling Stability Prediction
,”
Int. J. Mach. Tools Manuf.
,
74
(
8
), pp.
56
64
.
24.
Huang
,
T.
,
Zhang
,
X.
, and
Ding
,
H.
,
2017
, “
A Novel Approach With Smallest Transition Matrix for Milling Stability Prediction
,”
Nonlinear Dyn.
,
90
(
1
), pp.
95
104
.
25.
Huang
,
T.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Decoupled Chip Thickness Calculation Model for Cutting Force Prediction in Five-Axis Ball-End Milling
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1203
1217
.
26.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
27.
Marcotte
,
P.
, and
Dussault
,
J.-P.
,
1989
, “
A Sequential Linear Programming Algorithm for Solving Monotone Variational Inequalities
,”
SIAM J. Control Optim.
,
27
(
6
), pp.
1260
1278
.
28.
Jun
,
C.-S.
,
Cha
,
K.
, and
Lee
,
Y.-S.
,
2003
, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput.-Aided Des.
,
35
(
6
), pp.
549
566
.
29.
Yang
,
J.
, and
Altintas
,
Y.
,
2013
, “
Generalized Kinematics of Five-Axis Serial Machines With Non-Singular Tool Path Generation
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
119
132
.
30.
Wright
,
S.
, and
Nocedal
,
J.
,
1999
, Numerical Optimization,
Springer Series in Operations Research
,
New York
, p.
164
.
You do not currently have access to this content.