Additive manufacturing (AM) is now capable of fabricating geometrically complex geometries such as a variable-density lattice structure. This ability to handle geometric complexity provides the designer an opportunity to rethink the design method. In this work, a novel topology optimization algorithm is proposed to design variable-density lattice infill to maximize the first eigenfrequency of the structure. To make the method efficient, the lattice infill is treated as a continuum material with equivalent elastic properties obtained from asymptotic homogenization (AH), and the topology optimization is employed to find the optimum density distribution of the lattice structure. Specifically, the AH method is employed to calculate the effective mechanical properties of a predefined lattice structure as a function of its relative densities. Once the optimal density distribution is obtained, a continuous mapping technique is used to convert the optimal density distribution into variable-density lattice structured design. Two three-dimensional (3D) examples are used to validate the proposed method, where the designs are printed by the EOS direct metal laser sintering (DMLS) process in Ti6Al4V. Experimental results obtained from dynamical testing of the printed samples and detailed simulation results are in good agreement with the homogenized model results, which demonstrates the accuracy and efficiency of the proposed method.

References

References
1.
Shapiro
,
A.
,
Borgonia
,
J.
,
Chen
,
Q.
,
Dillon
,
R.
,
McEnerney
,
B.
,
Polit-Casillas
,
R.
, and
Soloway, L.
,
2016
, “
Additive Manufacturing for Aerospace Flight Applications
,”
J. Spacecr. Rockets
,
53
(
5
), pp.
952
959
.
2.
Zhu
,
J.-H.
,
Zhang
,
W.-H.
, and
Xia
,
L.
,
2016
, “
Topology Optimization in Aircraft and Aerospace Structures Design
,”
Arch. Comput. Methods Eng.
,
23
(
4
), pp.
595
622
.
3.
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Additive Fabrication Technologies Applied to Medicine and Health Care: A Review
,”
Int. J. Adv. Manuf. Technol.
,
40
(
1–2
), pp.
116
127
.
4.
Thompson
,
S. M.
,
Aspin
,
Z. S.
,
Shamsaei
,
N.
,
Elwany
,
A.
, and
Bian
,
L.
,
2015
, “
Additive Manufacturing of Heat Exchangers: A Case Study on a Multi-Layered Ti–6Al–4V Oscillating Heat Pipe
,”
Addit. Manuf.
,
8
), pp.
163
174
.
5.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
6.
Murr
,
L.
,
Gaytan
,
S.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B.
,
Hernandez, D.
,
Martinez, L.
,
Lopez, M.
, and
Wicker, R.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. London A
,
368
(
1917
), pp.
1999
2032
.
7.
Cheng
,
L.
,
Zhang
,
P.
,
Biyikli
,
E.
,
Bai
,
J.
,
Robbins
,
J.
, and
To
,
A.
,
2017
, “
Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufacturing: Theory and Experimental Validation
,”
Rapid Prototyping J.
,
23
(
4
), pp. 660–677.
8.
Evans
,
A. G.
,
Hutchinson
,
J.
, and
Ashby
,
M.
,
1998
, “
Multifunctionality of Cellular Metal Systems
,”
Prog. Mater. Sci.
,
43
(
3
), pp.
171
221
.
9.
Zhao
,
C.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.
10.
Ryan
,
G.
,
Pandit
,
A.
, and
Apatsidis
,
D. P.
,
2006
, “
Fabrication Methods of Porous Metals for Use in Orthopaedic Applications
,”
Biomaterials
,
27
(
13
), pp.
2651
2670
.
11.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To, A. C.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
.
12.
Huang
,
X.
,
Zhou
,
S.
,
Xie
,
Y.
, and
Li
,
Q.
,
2013
, “
Topology Optimization of Microstructures of Cellular Materials and Composites for Macrostructures
,”
Comput. Mater. Sci.
,
67
, pp.
397
407
.
13.
Zhang
,
J.
,
Wang
,
Z.
, and
Zhao
,
L.
,
2016
, “
Dynamic Response of Functionally Graded Cellular Materials Based on the Voronoi Model
,”
Composites, Part B
,
85
, pp.
176
187
.
14.
Akbarzadeh
,
A.
,
Fu
,
J.
,
Chen
,
Z.
, and
Qian
,
L.
,
2014
, “
Dynamic Eigenstrain Behavior of Magnetoelastic Functionally Graded Cellular Cylinders
,”
Compos. Struct.
,
116
, pp.
404
413
.
15.
Akbarzadeh
,
A.
,
Fu
,
J.
,
Liu
,
L.
,
Chen
,
Z.
, and
Pasini
,
D.
,
2016
, “
Electrically Conducting Sandwich Cylinder With a Planar Lattice Core Under Prescribed Eigenstrain and Magnetic Field
,”
Compos. Struct.
,
153
, pp.
632
644
.
16.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
17.
Cheng
,
L.
,
Zhang
,
P.
,
Biyikli
,
E.
,
Bai
,
J.
,
Pilz
,
S.
, and
To
,
A. C.
,
2015
, “
Integration of Topology Optimization With Efficient Design of Additive Manufactured Cellular Structures
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 10–12, pp. 1370–1377.https://pdfs.semanticscholar.org/62dc/b8aea14d71d86cf578ae8e4c63b9281f70e9.pdf
18.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, pp.
348
362
.http://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf
19.
Wang
,
X.
,
Zhang
,
P.
,
Ludwick
,
S.
,
Belski
,
E.
, and
To
,
A. C.
,
2018
, “
Natural Frequency Optimization of 3D Printed Variable-Density Honeycomb Structure Via a Homogenization-Based Approach
,”
Addit. Manuf.
,
20
(18), pp. 189–198.
20.
Cheng
,
L.
,
Liu
,
J.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Coupling Lattice Structure Topology Optimization With Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
408
439
.
21.
Cheng
,
L.
,
Liu
,
J.
, and
To
,
A. C.
,
2018
, “
Concurrent Lattice Infill With Feature Evolution Optimization for Additive Manufactured Heat Conduction Design
,”
Struct. Multidiscip. Optim.
, epub.
22.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
23.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
24.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
, Boston, MA.
25.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
26.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1997
, “
Basic Evolutionary Structural Optimization
,”
Evolutionary Structural Optimization
,
Springer
, London, pp.
12
29
.
27.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
28.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
29.
Liu
,
J.
,
Ma
,
Y.
,
Fu
,
J.
, and
Duke
,
K.
,
2015
, “
A Novel CACD/CAD/CAE Integrated Design Framework for Fiber-Reinforced Plastic Parts
,”
Adv. Eng. Software
,
87
, pp.
13
29
.
30.
Liu
,
J.
,
Cheng
,
L.
, and
To
,
A. C.
,
2017
, “
Arbitrary Void Feature Control in Level Set Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
324
, pp.
595
618
.
31.
Li
,
Q.
,
Steven
,
G. P.
,
Querin
,
O. M.
, and
Xie
,
Y.
,
1999
, “
Shape and Topology Design for Heat Conduction by Evolutionary Structural Optimization
,”
Int. J. Heat Mass Transfer
,
42
(
17
), pp.
3361
3371
.
32.
Yaji
,
K.
,
Yamada
,
T.
,
Kubo
,
S.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2015
, “
A Topology Optimization Method for a Coupled Thermal–Fluid Problem Using Level Set Boundary Expressions
,”
Int. J. Heat Mass Transfer
,
81
, pp.
878
888
.
33.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
34.
Qian
,
X.
, and
Dede
,
E. M.
,
2016
, “
Topology Optimization of a Coupled Thermal-Fluid System Under a Tangential Thermal Gradient Constraint
,”
Struct. Multidiscip. Optim.
,
54
(
3
), pp.
531
551
.
35.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
Proc. SPIE
,
3040
, pp.
52
60
.
36.
Christiansen
,
R. E.
, and
Sigmund
,
O.
,
2016
, “
Designing Meta Material Slabs Exhibiting Negative Refraction Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
3
), pp.
469
482
.
37.
Díaaz
,
A. R.
, and
Kikuchi
,
N.
,
1992
, “
Solutions to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
35
(
7
), pp.
1487
1502
.
38.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
,
1995
, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
,
121
(
1–4
), pp.
259
280
.
39.
Ma
,
Z.-D.
,
Cheng
,
H.-C.
, and
Kikuchi
,
N.
,
1994
, “
Structural Design for Obtaining Desired Eigenfrequencies by Using the Topology and Shape Optimization Method
,”
Comput. Syst. Eng.
,
5
(
1
), pp.
77
89
.
40.
Pedersen
,
N. L.
,
2000
, “
Maximization of Eigenvalues Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
1
), pp.
2
11
.
41.
Du
,
J.
, and
Olhoff
,
N.
,
2010
, “
Topological Design of Vibrating Structures With Respect to Optimum Sound Pressure Characteristics in a Surrounding Acoustic Medium
,”
Struct. Multidiscip. Optim.
,
42
(
1
), pp.
43
54
.
42.
Du
,
J.
, and
Olhoff
,
N.
,
2007
, “
Topological Design of Freely Vibrating Continuum Structures for Maximum Values of Simple and Multiple Eigenfrequencies and Frequency Gaps
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
91
110
.
43.
Niu
,
B.
,
Yan
,
J.
, and
Cheng
,
G.
,
2009
, “
Optimum Structure With Homogeneous Optimum Cellular Material for Maximum Fundamental Frequency
,”
Struct. Multidiscip. Optim.
,
39
(
2
), pp.
115
132
.
44.
Huang
,
X.
,
Zuo
,
Z.
, and
Xie
,
Y.
,
2010
, “
Evolutionary Topological Optimization of Vibrating Continuum Structures for Natural Frequencies
,”
Comput. Struct.
,
88
(
5–6
), pp.
357
364
.
45.
Zuo
,
Z. H.
,
Huang
,
X.
,
Rong
,
J. H.
, and
Xie
,
Y. M.
,
2013
, “
Multi-Scale Design of Composite Materials and Structures for Maximum Natural Frequencies
,”
Mater. Des.
,
51
, pp.
1023
1034
.
46.
Xia
,
Q.
,
Shi
,
T.
, and
Wang
,
M. Y.
,
2011
, “
A Level Set Based Shape and Topology Optimization Method for Maximizing the Simple or Repeated First Eigenvalue of Structure Vibration
,”
Struct. Multidiscip. Optim.
,
43
(
4
), pp.
473
485
.
47.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1157
1172
.
48.
Wu
,
J.
,
Wang
,
C. C.
,
Zhang
,
X.
, and
Westermann
,
R.
,
2016
, “
Self-Supporting Rhombic Infill Structures for Additive Manufacturing
,”
Comput.-Aided Des.
,
80
, pp.
32
42
.
49.
Qian
,
X.
, 2017, “
Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach
,”
Int. J. Numer. Methods Eng.
,
111
(3), pp. 247–272.
50.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G. C.
,
1979
, “
Boundary Layers and Homogenization of Transport Processes
,”
Publ. Res. Inst. Math. Sci.
,
15
(
1
), pp.
53
157
.
51.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
2011
,
Asymptotic Analysis for Periodic Structures
, Vol.
374
,
American Mathematical Society
, Providence, RI.
52.
Willis
,
J. R.
,
1981
, “
Variational and Related Methods for the Overall Properties of Composites
,”
Adv. Appl. Mech.
,
21
, pp.
1
78
.
53.
Bakhvalov
,
N. S.
, and
Panasenko
,
G.
,
2012
,
Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials
, Vol.
36
,
Springer Science & Business Media
, Berlin.
54.
Arabnejad
,
S.
, and
Pasini
,
D.
,
2013
, “
Mechanical Properties of Lattice Materials Via Asymptotic Homogenization and Comparison With Alternative Homogenization Methods
,”
Int. J. Mech. Sci.
,
77
, pp.
249
262
.
55.
Hollister
,
S. J.
, and
Kikuchi
,
N.
,
1992
, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites
,”
Comput. Mech.
,
10
(
2
), pp.
73
95
.
56.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
57.
Cheng
,
G.-D.
,
Cai
,
Y.-W.
, and
Xu
,
L.
,
2013
, “
Novel Implementation of Homogenization Method to Predict Effective Properties of Periodic Materials
,”
Acta Mech. Sin.
,
29
(
4
), pp.
550
556
.
58.
Wang
,
Y.
,
Xu
,
H.
, and
Pasini
,
D.
,
2017
, “
Multiscale Isogeometric Topology Optimization for Lattice Materials
,”
Comput. Methods Appl. Mech. Eng.
,
316
, pp. 568–585.
59.
Terada
,
K.
,
Hori
,
M.
,
Kyoya
,
T.
, and
Kikuchi
,
N.
,
2000
, “
Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches
,”
Int. J. Solids Struct.
,
37
(
16
), pp.
2285
2311
.
60.
Zhang
,
W.
, and
Sun
,
S.
,
2006
, “
Scale‐Related Topology Optimization of Cellular Materials and Structures
,”
Int. J. Numer. Methods Eng.
,
68
(
9
), pp.
993
1011
.
61.
Tantikom
,
K.
,
Aizawa
,
T.
, and
Mukai
,
T.
,
2005
, “
Symmetric and Asymmetric Deformation Transition in the Regularly Cell-Structured Materials—Part I: Experimental Study
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2199
2210
.
62.
Shu
,
L.
,
Wang
,
M. Y.
,
Fang
,
Z.
,
Ma
,
Z.
, and
Wei
,
P.
,
2011
, “
Level Set Based Structural Topology Optimization for Minimizing Frequency Response
,”
J. Sound Vib.
,
330
(
24
), pp.
5820
5834
.
63.
Kim
,
N. H.
,
Dong
,
J.
,
Choi
,
K. K.
,
Vlahopoulos
,
N.
,
Ma
,
Z.-D.
,
Castanier
,
M.
, and
Pierre, C.
,
2003
, “
Design Sensitivity Analysis for Sequential Structural–Acoustic Problems
,”
J. Sound Vib.
,
263
(
3
), pp.
569
591
.
64.
Tcherniak
,
D.
,
2002
, “
Topology Optimization of Resonating Structures Using SIMP Method
,”
Int. J. Numer. Methods Eng.
,
54
(
11
), pp.
1605
1622
.
65.
Sundararajan
,
V. G.
,
2010
, “
Topology Optimization for Additive Manufacturing of Customized Meso-Structures Using Homogenization and Parametric Smoothing Functions
,”
Doctoral dissertation
, The University of Texas at Austin, Austin, TXhttps://repositories.lib.utexas.edu/handle/2152/ETD-UT-2010-12-2302.
66.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization*
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
67.
Svanberg
,
K.
, and
Svärd
,
H.
,
2013
, “
Density Filters for Topology Optimization Based on the Pythagorean Means
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
859
875
.
68.
Svanberg, K.
, 2002, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
SIAM J. Optim.
,
12
(2), pp. 555–573.
69.
Svanberg
,
K.
,
1987
, “
The Method of Moving a Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(2), pp. 359–373.
70.
Olhoff
,
N.
,
Lund
,
E.
, and
Seyranian
,
A.
,
1994
, “
Sensitivity Analysis and Optimization of Multiple Eigenvalues in Structural Design Problems
,”
AIAA
Paper No. AIAA-94-4319-CP.
You do not currently have access to this content.