In this paper, an inverse method is presented to evaluate the inner workpiece temperature distribution during cryogenic turning of metastable austenitic steel AISI 347 utilizing a FE representation of the process. Temperature data during the experiments are provided by thermocouples and a commercial thermography system. A constant cutting speed at two varying feeds is investigated. Inverse parameter verification by aligning simulated and experimental data in a least squares sense is achieved. A heat flux from tool to workpiece as well as heat transfer coefficients for forced convection by air and by carbon dioxide as cryogenic coolant are identified for each set of cutting parameters. Rigid body rotation in the model is considered applying convective time derivatives of the temperature field. Unphysical oscillations occurring in regions of high Péclet numbers are suppressed utilizing a streamline-upwind/Petrov–Galerkin scheme.

References

1.
Angel
,
T.
,
1954
, “
Formation of Martensite in Austenitic Stainless Steels
,”
J. Iron Steel Inst.
,
177
, pp.
165
174
.
2.
Mayer
,
P.
,
Skorupski
,
R.
,
Smaga
,
M.
,
Eifler
,
D.
, and
Aurich
,
J. C.
,
2014
, “
Deformation Induced Surface Hardening When Turning Metastable Austenitic Steel AISI 347 With Different Cryogenic Cooling Strategies
,”
Proc. CIRP
,
14
, pp.
101
106
.
3.
Aurich
,
J. C.
,
Mayer
,
P.
,
Kirsch
,
B.
,
Eifler
,
D.
,
Smaga
,
M.
, and
Skorupski
,
R.
,
2014
, “
Characterization of Deformation Induced Surface Hardening During Cryogenic Turning of AISI 347
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
65
68
.
4.
Mayer
,
P.
,
Kirsch
,
B.
, and
Aurich
,
J. C.
,
2014
, “
Investigations on Cryogenic Turning to Achieve Surface Hardening of Metastable Austenitic Steel AISI 347
,”
Adv. Mater. Res.
,
1018
, pp.
153
160
.
5.
Klocke
,
F.
, and
König
,
W.
,
2008
,
Fertigungsverfahren 1: Drehen, Fräsen, Bohren
, 8th ed.,
VDI-Buch. Springer-Verlag
,
Berlin
.
6.
Hahnenberger
,
F.
,
Smaga
,
M.
, and
Eifler
,
D.
,
2014
, “
Microstructural Investigation of the Fatigue Behavior and Phase Transformation in Metastable Austenitic Steels at Ambient and Lower Temperatures
,”
Int. J. Fatigue
,
69
, pp.
36
48
.
7.
Becker
,
S.
,
Mayer
,
P.
,
Kirsch
,
B.
,
Aurich
,
J. C.
,
v. Harbou
,
E.
, and
Müller
,
R.
,
2016
, “
Transient Finite Element Simulation of the Temperature Field During Cryogenic Turning of Metastable Austenitic Steel AISI 347
,”
PAMM
,
16
(
1
), pp.
303
304
.
8.
Brooks
,
A. N.
, and
Hughes
,
T.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.
9.
Hughes
,
T.
, and
Brooks
,
A. N.
,
1982
, “
A Theoretical Framework for Petrov-Galerkin Methods With Discontinuous Weighting Functions: Application to the Streamline-Upwind Procedure
,”
Finite Elements in Fluids
, Vol. 4,
Wiley
,
Hoboken, NJ
, pp.
47
65
.
10.
VDI-Gesellschaft
,
2013
,
VDI-Wärmeatlas
, 11., bearb. und erw. aufl. ed,
VDI-Buch. Springer Vieweg
,
Berlin
.
11.
Lequien
,
P.
,
Poulachon
,
G.
,
Outeiro
,
J. C.
, and
Rech
,
J.
,
2018
, “
Hybrid Experimental/Modelling Methodology for Identifying the Convective Heat Transfer Coefficient in Cryogenic Assisted Machining
,”
Appl. Therm. Eng.
,
128
, pp.
500
507
.
12.
Hribersek
,
M.
,
Sajn
,
V.
,
Pusavec
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2017
, “
The Procedure of Solving the Inverse Problem for Determining Surface Heat Transfer Coefficient Between Liquefied Nitrogen and Inconel 718 Workpiece in Cryogenic Machining
,”
Proc. CIRP
,
58
, pp.
617
622
.
13.
Ryfa
,
A.
, and
Bialecki
,
R. A.
,
2011
, “
Retrieving the Heat Transfer Coefficient for Jet Impingement From Transient Temperature Measurements
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
1024
1035
.
You do not currently have access to this content.