In this paper, an inverse method is presented to evaluate the inner workpiece temperature distribution during cryogenic turning of metastable austenitic steel AISI 347 utilizing a FE representation of the process. Temperature data during the experiments are provided by thermocouples and a commercial thermography system. A constant cutting speed at two varying feeds is investigated. Inverse parameter verification by aligning simulated and experimental data in a least squares sense is achieved. A heat flux from tool to workpiece as well as heat transfer coefficients for forced convection by air and by carbon dioxide as cryogenic coolant are identified for each set of cutting parameters. Rigid body rotation in the model is considered applying convective time derivatives of the temperature field. Unphysical oscillations occurring in regions of high Péclet numbers are suppressed utilizing a streamline-upwind/Petrov–Galerkin scheme.
Skip Nav Destination
Article navigation
October 2018
Research-Article
A Finite Element Approach to Calculate Temperatures Arising During Cryogenic Turning of Metastable Austenitic Steel AISI 347
Steven Becker,
Steven Becker
Institute of Applied Mechanics,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
e-mail: becker_s@rhrk.uni-kl.de
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
e-mail: becker_s@rhrk.uni-kl.de
Search for other works by this author on:
Hendrik Hotz,
Hendrik Hotz
Institute for Manufacturing Technology
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Search for other works by this author on:
Benjamin Kirsch,
Benjamin Kirsch
Institute for Manufacturing Technology
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Search for other works by this author on:
Jan C. Aurich,
Jan C. Aurich
Institute for Manufacturing Technology
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Search for other works by this author on:
Erik V. Harbou,
Erik V. Harbou
Laboratory of Engineering Thermodynamics,
Technische Universität Kaiserslautern,
Technische Universität Kaiserslautern,
Kaiserslautern 67663
, Germany
Search for other works by this author on:
Ralf Müller
Ralf Müller
Institute of Applied Mechanics,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Search for other works by this author on:
Steven Becker
Institute of Applied Mechanics,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
e-mail: becker_s@rhrk.uni-kl.de
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
e-mail: becker_s@rhrk.uni-kl.de
Hendrik Hotz
Institute for Manufacturing Technology
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Benjamin Kirsch
Institute for Manufacturing Technology
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Jan C. Aurich
Institute for Manufacturing Technology
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
and Production Systems,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Erik V. Harbou
Laboratory of Engineering Thermodynamics,
Technische Universität Kaiserslautern,
Technische Universität Kaiserslautern,
Kaiserslautern 67663
, Germany
Ralf Müller
Institute of Applied Mechanics,
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
Technische Universität Kaiserslautern,
Kaiserslautern 67663, Germany
1Corresponding author.
Manuscript received June 7, 2018; final manuscript received June 29, 2018; published online July 27, 2018. Editor: Y. Lawrence Yao.
J. Manuf. Sci. Eng. Oct 2018, 140(10): 101016 (7 pages)
Published Online: July 27, 2018
Article history
Received:
June 7, 2018
Revised:
June 29, 2018
Citation
Becker, S., Hotz, H., Kirsch, B., Aurich, J. C., Harbou, E. V., and Müller, R. (July 27, 2018). "A Finite Element Approach to Calculate Temperatures Arising During Cryogenic Turning of Metastable Austenitic Steel AISI 347." ASME. J. Manuf. Sci. Eng. October 2018; 140(10): 101016. https://doi.org/10.1115/1.4040778
Download citation file:
Get Email Alerts
Effect of Machining-Induced Deformation and Grain Refinement on Microstructure Evolution in Hybrid Wire-Arc Directed Energy Deposition
J. Manuf. Sci. Eng (October 2024)
Related Articles
Effects of a Reacting Cross-Stream on Turbine Film Cooling
J. Eng. Gas Turbines Power (May,2010)
Heat Transfer Coefficients of Film Cooling on a Rotating Turbine Blade Model—Part I: Effect of Blowing Ratio
J. Turbomach (October,2009)
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
J. Turbomach (October,2001)
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
J. Turbomach (October,2001)
Related Proceedings Papers
Related Chapters
GA Based Multi Objective Optimization of the Predicted Models of Cutting Temperature, Chip Reduction Co-Efficient and Surface Roughness in Turning AISI 4320 Steel by Uncoated Carbide Insert under HPC Condition
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Studies Performed
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential