Friction self-piercing riveting (F-SPR) process has shown advantages over fusion welding, solid state welding, and traditional mechanical joining processes in joining dissimilar materials. Because of the thermo-mechanical nature of F-SPR process, formation of the joint is determined by both riveting force and softening degree of materials to be joined. However, it is still not clear that how exactly the riveting force and generated frictional heat jointly influence mechanical interlocking formation and crack inhibition during F-SPR process. To address these issues, F-SPR process was applied to join 2.2 mm-thick aluminum alloy AA6061-T6 to 2.0 mm-thick magnesium alloy AZ31B. The correlation of riveting force, torque responses, and energy input with joint quality was investigated systematically under a wide range of process parameter combinations. It was found that a relatively greater final peak force and higher energy input were favorable to produce sound joints. Based on that, a two-stage F-SPR method was proposed to better control the energy input and riveting force for improved joint quality. The joints produced by the two-stage method exhibited significantly improved lap-shear strength, i.e., 70% higher than traditional self-piercing riveting (SPR) joints and 30% higher than previous one-stage F-SPR joints. This research provides a valuable reference for further understanding the F-SPR joint formation mechanism and conducting process optimization.

References

References
1.
Li
,
Y. B.
,
Ma
,
Y. W.
,
Lou
,
M. Y.
,
Lei
,
H.
, and
Lin
,
Z. Q.
,
2016
, “
Advances in Welding and Joining Processes of Multi-Material Lightweight Car Body
,”
Chin. J. Mech. Eng.
,
52
(
24
), pp.
1
23
.
2.
Han
,
G. K.
,
Wang
,
M. X.
,
Liu
,
Z. X.
, and
Wang
,
P. C.
,
2013
, “
A New Joining Process for Magnesium Alloys: Rotation Friction Drilling Riveting
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031012
.
3.
Manladan
,
S. M.
,
Yusof
,
F.
,
Ramesh
,
S.
,
Fadzil
,
M.
,
Luo
,
Z.
, and
Ao
,
S.
,
2016
, “
A Review on Resistance Spot Welding of Aluminum Alloys
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
605
634
.
4.
Yamamoto
,
M.
,
Gerlich
,
A.
,
North
,
T. H.
, and
Shinozaki
,
K.
,
2013
, “
Cracking and Local Melting in Mg-Alloy and Al-Alloy During Friction Stir Spot Welding
,”
Weld. World
,
52
(
9–10
), pp.
38
46
.
5.
Zhang
,
Y.
,
Shan
,
H.
,
Li
,
Y.
,
Zhao
,
C. F.
,
Luo
,
Z.
,
Guo
,
J.
, and
Ma
,
C. Y.
,
2017
, “
Effects of the Oxide Film on the Spot Joining of Aluminum Alloy Sheets: A Comparative Study Between Resistance Spot Welding and Resistance Spot Clinching
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4231
4240
.
6.
Sigler
,
D. R.
,
Carlson
,
B. E.
, and
Janiak
,
P.
,
2013
, “
Improving Aluminum Resistance Spot Welding in Automotive Structures
,”
Weld. J.
,
92
(
6
), pp.
64
72
.https://app.aws.org/rwma/docs/RW_Automotive_Structure.pdf
7.
Lin
,
D.
,
YongBing
,
L.
,
Blair E
,
C.
, and
David R
,
S.
,
2018
, “
Effects of Electrode Surface Topography on Aluminum Resistance Spot Welding
,”
Weld. J.
,
97
(
4
), pp.
120s
132s
.
8.
Böllinghaus
,
T.
,
Herold
,
H.
,
Cross
,
C. E.
, and
Lippold
,
J. C.
,
2008
,
Hot Cracking Phenomena in Welds II
, Springer, Heidelberg, pp.
1
467
.
9.
Liu
,
L.
,
Ren
,
D.
, and
Liu
,
F.
,
2014
, “
A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys
,”
Mater. (Basel)
,
7
(
5
), pp.
3735
3757
.
10.
Zhang
,
Y.
,
Luo
,
Z.
,
Li
,
Y.
,
Liu
,
Z. M.
, and
Huang
,
Z. Y.
,
2015
, “
Microstructure Characterization and Tensile Properties of Mg/Al Dissimilar Joints Manufactured by Thermo-Compensated Resistance Spot Welding With Zn Interlayer
,”
Mater. Des.
,
75
, pp.
166
173
.
11.
Suhuddin
,
U. F. H.
,
Fischer
,
V.
, and
dos Santos
,
J. F.
,
2013
, “
The Thermal Cycle During the Dissimilar Friction Spot Welding of Aluminum and Magnesium Alloy
,”
Scr. Mater.
,
68
(
1
), pp.
87
90
.
12.
Patel
,
V. K.
,
Bhole
,
S. D.
, and
Chen
,
D. L.
,
2012
, “
Microstructure and Mechanical Properties of Dissimilar Welded Mg-Al Joints by Ultrasonic Spot Welding Technique
,”
Sci. Technol. Weld. Joining
,
17
(
3
), pp.
202
206
.
13.
Shen
,
Z. K.
,
Yang
,
X. Q.
,
Zhang
,
Z. H.
,
Cui
,
L.
, and
Li
,
T. L.
,
2013
, “
Microstructure and Failure Mechanisms of Refill Friction Stir Spot Welded 7075-T6 Aluminum Alloy Joints
,”
Mater. Des.
,
44
(
Suppl. C
), pp.
476
486
.
14.
Chu
,
Q.
,
Yang
,
X. W.
,
Li
,
W. Y.
, and
Li
,
Y. B.
,
2016
, “
Microstructure and Mechanical Behaviour of Pinless Friction Stir Spot Welded AA2198 Joints
,”
Sci. Technol. Weld. Joining
,
21
(
3
), pp.
164
170
.
15.
Lin
,
Y. C.
,
Liu
,
J. J.
,
Lin
,
B. Y.
,
Lin
,
C. M.
, and
Tsai
,
H. L.
,
2012
, “
Effects of Process Parameters on Strength of Mg Alloy AZ61 Friction Stir Spot Welds
,”
Mater. Des.
,
35
, pp.
350
357
.
16.
Chen
,
G. Q.
,
Li
,
H.
,
Wang
,
G. Q.
,
Guo
,
Z. Q.
,
Zhang
,
S.
,
Dai
,
Q. L.
,
Wang
,
X. B.
,
Zhang
,
G.
, and
Shi
,
Q. Y.
,
2018
, “
Effects of Pin Thread on the in-Process Material Flow Behavior During Friction Stir Welding: A Computational Fluid Dynamics Study
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
12
21
.
17.
Mori
,
K. I.
,
Bay
,
N.
,
Fratini
,
L.
,
Micari
,
F.
, and
Tekkaya
,
A. E.
,
2013
, “
Joining by Plastic Deformation
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
673
694
.
18.
Luo
,
A. A.
,
Lee
,
T. M.
, and
Carter
,
J. T.
,
2011
, “
Self-Pierce Riveting of Magnesium to Aluminum Alloys
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
158
165
.
19.
Durandet
,
Y.
,
Deam
,
R.
,
Beer
,
A.
,
Song
,
W.
, and
Blacket
,
S.
,
2010
, “
Laser Assisted Self-Pierce Riveting of AZ31 Magnesium Alloy Strips
,”
Mater. Des.
,
31
(
Suppl. 1
), pp.
S13
S16
.
20.
Easton
,
M.
,
Beer
,
A.
,
Barnett
,
M.
,
Davies
,
C.
,
Dunlop
,
G.
,
Durandet
,
Y.
,
Blacket
,
S.
,
Hilditch
,
T.
, and
Beggs
,
P.
,
2008
, “
Magnesium Alloy Applications in Automotive Structures
,”
JOM
,
60
(
11
), pp.
57
62
.
21.
Wang
,
J. W.
,
Liu
,
Z. X.
,
Shang
,
Y.
,
Liu
,
A. L.
,
Wang
,
M. X.
,
Sun
,
R. N.
, and
Wang
,
P. C.
,
2011
, “
Self-Piercing Riveting of Wrought Magnesium AZ31 Sheets
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031009
.
22.
Li
,
Y. B.
,
Wei
,
Z. Y.
,
Wang
,
Z. Z.
, and
Li
,
Y. T.
,
2013
, “
Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061007
.
23.
Ma
,
Y. W.
,
Lou
,
M.
,
Yang
,
Z.
, and
Li
,
Y. B.
,
2015
, “
Effect of Rivet Hardness and Geometrical Features on Friction Self-Piercing Riveted Joint Quality
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
054501
.
24.
Liu
,
X.
,
Lim
,
Y. C.
,
Li
,
Y. B.
,
Tang
,
W.
,
Ma
,
Y. W.
,
Feng
,
Z. L.
, and
Ni
,
J.
,
2016
, “
Effects of Process Parameters on Friction Self-Piercing Riveting of Dissimilar Materials
,”
J. Mater. Process. Technol.
,
237
, pp.
19
30
.
25.
Li
,
D.
,
Han
,
L.
,
Thornton
,
M.
, and
Shergold
,
M.
,
2012
, “
Influence of Edge Distance on Quality and Static Behaviour of Self-Piercing Riveted Aluminium Joints
,”
Mater. Des.
,
34
, pp.
22
31
.
26.
GM,
2004
, “
Self Piercing Rivets, in Engineering Standards-Material Specification Metals
,” North American Engineering Standards: General Motors Corporation, Detroit, MI, Standard No. GMN11010.
27.
Ma
,
Y. W.
,
Li
,
Y. B.
,
Hu
,
W.
,
Lou
,
M.
, and
Lin
,
Z. Q.
,
2016
, “
Modeling of Friction Self-Piercing Riveting of Aluminum to Magnesium
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061007
.
28.
Miller
,
S. F.
,
Tao
,
J.
, and
Shih
,
A. J.
,
2006
, “
Friction Drilling of Cast Metals
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1526
1535
.
You do not currently have access to this content.