The surfaces with textures have been widely used as functional surfaces, and the textures are usually generated on flat or cylindrical surfaces. Textured freeform surfaces will have more potential applications. The authors have proposed the double-frequency elliptical vibration cutting (DFEVC) method to machine freeform surfaces on steel materials. Based on this method, a new diamond turning method is developed, in which the variable-frequency modulations are utilized to control the tool marks left on the machined surface to generate the micro/nano dimple textures with high uniformity on the freeform surface. Different from the conventional surface topography model based on the ideal tool cutting edge with zero cutting edge radius, a new modeling approach based on the tool surface profiles is proposed, in which the rake face, the flank face, and the cutting edge surface with actual non-zero cutting edge radius instead of the ideal cutting edge are included for the tool model, the tool surfaces during the machining process are analytically described as a function of the tool geometry and the machining parameters, and the influences of the tool surface profiles on the topography generation of the machined surface are considered. A typical freeform surface is textured on die steel, and the measured results verify the feasibility of the proposed turning method. Compared with the topography prediction results based on the ideal cutting edge, the results considering the tool surfaces show improved simulation accuracy, and are consistent with the experimental results, which validates the proposed topography prediction approach.

References

References
1.
Evans
,
C. J.
, and
Bryan
,
J. B.
,
1999
, “
“Structured”, “Textured” or “Engineered” Surfaces
,”
CIRP Ann. Manuf. Technol.
,
48
(
2
), pp.
541
556
.
2.
Bruzzone
,
A. A. G.
,
Costa
,
H. L.
,
Lonardo
,
P. M.
, and
Lucca
,
D. A.
,
2008
, “
Advances in Engineered Surfaces for Functional Performance
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
750
769
.
3.
Fang
,
F. Z.
,
Zhang
,
X. D.
,
Weckenmann
,
A.
,
Zhang
,
G. X.
, and
Evans
,
C.
,
2013
, “
Manufacturing and Measurement of Freeform Optics
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
823
846
.
4.
Dubey
,
A. K.
, and
Yadava
,
V.
,
2008
, “
Laser Beam Machining—A Review
,”
Int. J. Mach. Tools Manuf.
,
48
(
6
), pp.
609
628
.
5.
Mohd Abbas
,
N.
,
Solomon
,
D. G.
, and
Fuad Bahari
,
M.
,
2007
, “
A Review on Current Research Trends in Electrical Discharge Machining (EDM)
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1214
1228
.
6.
Brinksmeier
,
E.
,
Gläbe
,
R.
, and
Schönemann
,
L.
,
2012
, “
Review on Diamond-Machining Processes for the Generation of Functional Surface Structures
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
1
), pp.
1
7
.
7.
Dow
,
T. A.
,
Miller
,
M. H.
, and
Falter
,
P. J.
,
1991
, “
Application of a Fast Tool Servo for Diamond Turning of Nonrotationally Symmetric Surfaces
,”
Precis. Eng.
,
13
(
4
), pp.
243
250
.
8.
Brinksmeier
,
E.
,
Riemer
,
O.
,
Gläbe
,
R.
,
Lünemann
,
B.
,
Kopylow
,
C. V.
,
Dankwart
,
C.
, and
Meier
,
A.
,
2010
, “
Submicron Functional Surfaces Generated by Diamond Machining
,”
CIRP Ann.
,
59
(
1
), pp.
535
538
.
9.
Yi
,
A. Y.
, and
Li
,
L.
,
2005
, “
Design and Fabrication of a Microlens Array by Use of a Slow Tool Servo
,”
Opt. Lett.
,
30
(
13
), pp.
1707
1709
.
10.
Yin
,
Z. Q.
,
Dai
,
Y. F.
,
Li
,
S. Y.
,
Guan
,
C. L.
, and
Tie
,
G. P.
,
2011
, “
Fabrication of Off-Axis Aspheric Surfaces Using a Slow Tool Servo
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
404
410
.
11.
Mann
,
J. B.
,
Guo
,
Y.
,
Saldana
,
C.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2011
, “
Enhancing Material Removal Processes Using Modulation-Assisted Machining
,”
Tribol. Int.
,
44
(
10
), pp.
1225
1235
.
12.
Brehl
,
D. E.
, and
Dow
,
T. A.
,
2008
, “
Review of Vibration-Assisted Machining
,”
Precis. Eng.
,
32
(
3
), pp.
153
172
.
13.
Moscoso
,
W.
,
Gun
,
E.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2005
, “
Effect of Low-Frequency Modulation on Lubrication of Chip-Tool Interface in Machining
,”
ASME J. Tribol.
,
127
(
1
), pp.
238
244
.
14.
Jamshidi
,
H.
, and
Nategh
,
M. J.
,
2013
, “
Theoretical and Experimental Investigation of the Frictional Behavior of the Tool–Chip Interface in Ultrasonic-Vibration Assisted Turning
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
1
7
.
15.
Yeung
,
H.
,
Sundaram
,
N. K.
,
Mann
,
J. B.
,
Dale Compton
,
W.
, and
Chandrasekar
,
S.
,
2013
, “
Energy Dissipation in Modulation Assisted Machining
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
41
49
.
16.
Moriwaki
,
T.
, and
Shamoto
,
E.
,
1995
, “
Ultrasonic Elliptical Vibration Cutting
,”
CIRP Ann.
,
44
(
1
), pp.
31
34
.
17.
Guo
,
Y.
,
Mann
,
J. B.
,
Yeung
,
H.
, and
Chandrasekar
,
S.
,
2012
, “
Enhancing Tool Life in High-Speed Machining of Compacted Graphite Iron (CGI) Using Controlled Modulation
,”
Tribol. Lett.
,
47
(
1
), pp.
103
111
.
18.
Wang
,
Y.
,
Suzuki
,
N.
,
Shamoto
,
E.
, and
Zhao
,
Q.
,
2011
, “
Investigation of Tool Wear Suppression in Ultraprecision Diamond Machining of Die Steel
,”
Precis. Eng
,
35
(
4
), pp.
677
685
.
19.
Shamoto
,
E.
, and
Moriwaki
,
T.
,
1994
, “
Study on Elliptical Vibration Cutting
,”
CIRP Ann. Manuf. Technol.
,
43
(
1
), pp.
35
38
.
20.
Suzuki
,
N.
,
Yokoi
,
H.
, and
Shamoto
,
E.
,
2011
, “
Micro/Nano Sculpturing of Hardened Steel by Controlling Vibration Amplitude in Elliptical Vibration Cutting
,”
Precis. Eng.
,
35
(
1
), pp.
44
50
.
21.
Zhang
,
J.
,
Suzuki
,
N.
,
Wang
,
Y.
, and
Shamoto
,
E.
,
2014
, “
Fundamental Investigation of Ultra-Precision Ductile Machining of Tungsten Carbide by Applying Elliptical Vibration Cutting With Single Crystal Diamond
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2644
2659
.
22.
Zhang
,
J.
,
Suzuki
,
N.
,
Wang
,
Y.
, and
Shamoto
,
E.
,
2015
, “
Ultra-Precision Nano-Structure Fabrication by Amplitude Control Sculpturing Method in Elliptical Vibration Cutting
,”
Precis. Eng.
,
39
, pp.
86
99
.
23.
Greco
,
A.
,
Raphaelson
,
S.
,
Ehmann
,
K.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2009
, “
Surface Texturing of Tribological Interfaces Using the Vibromechanical Texturing Method
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061005
.
24.
Guo
,
P.
, and
Ehmann
,
K. F.
,
2013
, “
An Analysis of the Surface Generation Mechanics of the Elliptical Vibration Texturing Process
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
85
95
.
25.
Guo
,
P.
,
Lu
,
Y.
,
Pei
,
P.
, and
Ehmann
,
K. F.
,
2014
, “
Fast Generation of Micro-Channels on Cylindrical Surfaces by Elliptical Vibration Texturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041008
.
26.
Guo
,
P.
,
Lu
,
Y.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2014
, “
Generation of Hierarchical Micro-Structures for Anisotropic Wetting by Elliptical Vibration Cutting
,”
CIRP Ann.
,
63
(
1
), pp.
553
556
.
27.
Zhou
,
X.
,
Zuo
,
C.
,
Liu
,
Q.
, and
Lin
,
J.
,
2016
, “
Surface Generation of Freeform Surfaces in Diamond Turning by Applying Double-Frequency Elliptical Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
104
(
Suppl. C
), pp.
45
57
.
28.
Lee
,
W.
, and
Cheung
,
C.
,
2001
, “
A Dynamic Surface Topography Model for the Prediction of Nano-Surface Generation in Ultra-Precision Machining
,”
Int. J. Mech. Sci.
,
43
(
4
), pp.
961
991
.
29.
Kim
,
D.-S.
,
Chang
,
I.-C.
, and
Kim
,
S.-W.
,
2002
, “
Microscopic Topographical Analysis of Tool Vibration Effects on Diamond Turned Optical Surfaces
,”
Precis. Eng.
,
26
(
2
), pp.
168
174
.
30.
Kong
,
L.
, and
Cheung
,
C.
,
2012
, “
Modeling and Characterization of Surface Generation in Fast Tool Servo Machining of Microlens Arrays
,”
Comput. Ind. Eng.
,
63
(
4
), pp.
957
970
.
31.
Zhang
,
X.
,
Kumar
,
A. S.
,
Rahman
,
M.
, and
Liu
,
K.
,
2013
, “
Modeling of the Effect of Tool Edge Radius on Surface Generation in Elliptical Vibration Cutting
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
35
42
.
32.
Zhou
,
X.
,
Zuo
,
C.
,
Liu
,
Q.
,
Wang
,
R.
, and
Lin
,
J.
,
2016
, “
Development of a Double-Frequency Elliptical Vibration Cutting Apparatus for Freeform Surface Diamond Machining
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
2099
2111
.
You do not currently have access to this content.