Expanding performance of friction power in material processing techniques, considerably improves the process efficiency while decreases required load and increases imposed strain by the localized material softening. This paper proposes friction-assisted tube forming (FATF) and friction-assisted tube extrusion (FATE) to deform cylindrical tubes for desirable radius and thickness. These methods were successfully examined on commercially pure copper tubes. Finite element (FE) analyses were executed to simulate heat generation, temperature, and strain fields. Using friction power in the presented methods significantly reduced processing force and enhanced imposed strain. Therefore, FATF and FATE show a great capability to forming and extrusion of the cylindrical tubes with minimum processing power. Mechanical properties of the processed tubes showed considerable changes in which yield strength and ultimate tensile strength increased 4.6 and 1.6 times greater than those from the initial values. Dynamically recrystallized fine grains with mean size of 8.3 μm were obtained compared with 60 μm for the annealed sample.

References

References
1.
Estrin
,
Y.
, and
Vinogradov
,
A.
,
2013
, “
Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science
,”
Acta Mater.
,
61
(
3
), pp.
782
817
.
2.
Valiev
,
R. Z.
, and
Alexandrov
,
I. V.
,
1999
, “
Nanostructured Materials From Severe Plastic Deformation
,”
Nanostruct. Mater.
,
12
(
1–4
), pp.
35
40
.
3.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
2006
, “
Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement
,”
Prog. Mater. Sci.
,
51
(
7
), pp.
881
981
.
4.
Sakai
,
G.
,
Nakamura
,
K.
,
Horita
,
Z.
, and
Langdon
,
T. G.
,
2005
, “
Developing High-Pressure Torsion for Use With Bulk Samples
,”
Mater. Sci. Eng. A
,
406
(
1–2
), pp.
268
273
.
5.
Tsuji
,
N.
,
Saito
,
Y.
,
Utsunomiya
,
H.
, and
Tanigawa
,
S.
,
1999
, “
Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process
,”
Scr. Mater.
,
40
(
7
), pp.
795
800
.
6.
Richert
,
M. R. J.
,
1986
, “
A New Method for Unlimited Deformation of Metals and Alloys
,”
Aluminium
,
62
(
8
), pp.
604
607
.
7.
Su
,
J. Q.
,
Nelson
,
T. W.
,
McNelley
,
T. R.
, and
Mishra
,
R. S.
,
2011
, “
Development of Nanocrystalline Structure in Cu During Friction Stir Processing (FSP)
,”
Mater. Sci. Eng. A
,
528
(
16–17
), pp.
5458
5464
.
8.
Hosseini
,
S. H.
,
Abrinia
,
K.
, and
Faraji
,
G.
,
2015
, “
Applicability of a Modified Backward Extrusion Process on Commercially Pure Aluminum
,”
J. Mater.
,
65
, pp.
521
528
.
9.
Toth
,
L.
,
Arzaghi
,
M.
,
Fundenberger
,
J.
,
Beausir
,
B.
,
Bouaziz
,
O.
, and
Arruffatmassion
,
R.
,
2009
, “
Severe Plastic Deformation of Metals by High-Pressure Tube Twisting
,”
Scr. Mater.
,
60
(
3
), pp.
175
177
.
10.
Zangiabadi
,
A.
, and
Kazeminezhad
,
M.
,
2011
, “
Development of a Novel Severe Plastic Deformation Method for Tubular Materials: Tube Channel Pressing (TCP)
,”
Mater. Sci. Eng. A
,
528
(
15
), pp.
5066
5072
.
11.
Abdolvand
,
H.
,
Faraji
,
G.
,
Givi
,
M. K. B.
,
Hashemi
,
R.
, and
Riazat
,
M.
,
2015
, “
Evaluation of the Microstructure and Mechanical Properties of the Ultrafine Grained Thin-Walled Tubes Processed by Severe Plastic Deformation
,”
Met. Mater. Int
,
21
(
6
), pp.
1068
1073
.
12.
Hosseini
,
S. H.
, and
Abrinia
,
K.
,
2016
, “
Determination of Processing Power and Optimum Billet Radius of Modified Backward Extrusion by Upper Bound Approach
,”
Trans. Nonferrous Met. Soc. China
,
26
(
8
), pp.
2170
2178
.
13.
Jamali
,
S. S.
,
Faraji
,
G.
, and
Abrinia
,
K.
,
2016
, “
Materials Science and Engineering: Evaluation of Mechanical and Metallurgical Properties of AZ91 Seamless Tubes Produced by Radial-Forward Extrusion Method
,”
Mater. Sci. Eng. A
,
666
, pp.
176
183
.
14.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R Rep.
,
50
(
1–2
), pp.
1
78
.
15.
Mishra
,
R. S.
,
Ma
,
Z. Y.
, and
Charit
,
I.
,
2003
, “
Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite
,”
Mater. Sci. Eng. A
,
341
(
1–2
), pp.
1
4
.
16.
Babu
,
S. R.
,
Kumar
,
V. S. S.
,
Karunamoorthy
,
L.
, and
Reddy
,
G. M.
,
2014
, “
Investigation on the Effect of Friction Stir Processing on the Superplastic Forming of AZ31B Alloy
,”
J. Mater.
,
53
, pp.
338
348
.
17.
Xue
,
P.
,
Wang
,
B. B.
,
Chen
,
F. F.
,
Wang
,
W. G.
,
Xiao
,
B. L.
, and
Ma
,
Z. Y.
, 2016, “
Microstructure and Mechanical Properties of friction Stir Processed Cu With an Ideal Ultrafine-Grained Structure
,”
Mater. Charact.
,
121
, pp. 187–194.
18.
Abu-Farha
,
F.
,
2012
, “
A Preliminary Study on the Feasibility of Friction Stir Back Extrusion
,”
Scr. Mater.
,
66
(
9
), pp.
615
618
.
19.
Khorrami
,
M. S.
, and
Movahedi
,
M.
,
2015
, “
Microstructure Evolutions and Mechanical Properties of Tubular Aluminum Produced by Friction Stir Back Extrusion
,”
J. Mater.
,
65
, pp.
74
79
.
20.
Hosseini
,
S. H.
, and
Sedighi
,
M.
,
2016
, “
On the Feasibility of a Novel Severe Plastic Deformation Method for Cylindrical Tubes; Friction Assisted Tubular Channel Pressing (FATCP)
,”
J. Mech. Sci. Technol.
,
30
(
11
), pp.
5153
5157
.
21.
Segal
,
V. M.
,
1995
, “
Materials Processing by Simple Shear
,”
Mater. Sci. Eng. A
,
197
(
2
), pp.
157
164
.
22.
Smith, M.
, 2013,
ABAQUS/Standard User's Manual
, Version 6.13, Simulia, Providence, RI.
23.
Cartigueyen
,
S.
,
Sukesh
,
O. P.
, and
Mahadevan
,
K.
,
2014
, “
Numerical and Experimental Investigations of Heat Generation During Friction Stir Processing of Copper
,”
Procedia Eng.
,
97
, pp.
1069
78
.
24.
Ding
,
R.
, and
Guo
,
Z. X.
,
2001
, “
Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization
,”
Acta Mater.
,
49
(
16
), pp.
3163
3175
.
25.
Mock
,
U. F.
,
1976
, “
Laws for Work-Hardening and Low-Temprature Creep
,”
ASME J. Eng. Mater. Technol.
,
98P
(
1
), pp.
76
85
.
26.
Lee
,
H. W.
, and
Im
,
Y.
,
2010
, “
Cellular Automata Modeling of Grain Coarsening and Refinement During the Dynamic Recrystallization of Pure Copper
,”
Mater. Trans.
,
51
(
9
), pp.
1614
1620
.
27.
Arzaghi
,
M.
,
Fundenberger
,
J. J.
,
Toth
,
L. S.
,
Arruffat
,
R.
, and
Faure
,
L.
,
2012
, “
Microstructure, Texture and Mechanical Properties of Aluminum Processed by High-Pressure Tube Twisting
,”
Acta Mater.
,
60
(
11
), pp.
4393
4408
.
28.
Pougis
,
A.
,
Tóth
,
L. S.
,
Bouaziz
,
O.
,
Fundenberger
,
J.-J.
,
Barbier
,
D.
, and
Arruffat
,
R.
,
2012
, “
Stress and Strain Gradients in High-Pressure Tube Twisting
,”
Scr. Mater.
,
66
(
10
), pp.
773
776
.
29.
Faraji
,
G.
,
Mosavi
,
M.
, and
Seop
,
H.
,
2011
, “
Tubular Channel Angular Pressing (TCAP) as a Novel Severe Plastic Deformation Method for Cylindrical Tubes
,”
Mater. Lett.
,
65
(
19–20
), pp.
3009
3012
.
30.
Faraji
,
G.
,
Babaei
,
A.
,
Mashhadi
,
M. M.
, and
Abrinia
,
K.
,
2012
, “
Parallel Tubular Channel Angular Pressing (PTCAP) as a New Severe Plastic Deformation Method for Cylindrical Tubes
,”
Mater. Lett.
,
77
, pp.
82
85
.
31.
Sun
,
Y. F.
, and
Fujii
,
H.
,
2010
, “
Investigation of the Welding Parameter Dependent Microstructure and Mechanical Properties of Friction Stir Welded Pure Copper
,”
Mater. Sci. Eng. A
,
527
(
26
), pp.
6879
6886
.
32.
Sun
,
Y. F.
,
Xu
,
N.
, and
Fujii
,
H.
,
2014
, “
The Microstructure and Mechanical Properties of Friction Stir Welded Cu–30Zn Brass Alloys
,”
Mater. Sci. Eng. A
,
589
, pp.
228
234
.
33.
Humphreys
,
F. J.
, and
Hatherly
,
M.
,
2004
,
Recrystallization and Related Annealing Phenomena
,
2nd ed.
,
Elsevier
, Oxford, UK.
34.
Gourdet
,
S.
, and
Montheillet
,
F.
,
2003
, “
A Model of Continuous Dynamic Recrystallization
,”
Acta Mater.
,
51
(
9
), pp.
2685
2699
.
35.
Kugler
,
G.
, and
Turk
,
R.
,
2004
, “
Modeling the Dynamic Recrystallization Under Multi-Stage Hot Deformation
,”
Acta Mater.
,
52
(
15
), pp.
4659
4668
.
36.
Pardis
,
N.
,
Chen, C.
,
Ebrahimi, R.
,
Toth, L. S.
,
Gu, C. F.
,
Beausir, B.
, and
Kommel, L.
,
2015
, “
Microstructure, Texture and Mechanical Properties of Cyclic Expansion-Extrusion Deformed Pure Copper
,”
Mater. Sci. Eng. A
,
628
, pp.
423
432
.
37.
Torre
,
F. D.
,
Lapovok
,
R.
,
Sandlin
,
J.
,
Thomson
,
P. F.
,
Davies
,
C. H. J.
, and
Pereloma
,
E. V.
,
2004
, “
Microstructures and Properties of Copper Processed by Equal Channel Angular Extrusion for 1–16 Passes
,”
Acta Mater.
,
52
(
16
), pp.
4819
4832
.
38.
Mishra
,
A.
,
Kad
,
B. K.
,
Gregori
,
F.
, and
Meyers
,
M. A.
,
2007
, “
Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis
,”
Acta Mater.
,
55
(
1
), pp.
13
28
.
39.
Pasebani
,
S.
, and
Toroghinejad
,
M. R.
,
2010
, “
Nano-Grained 70/30 Brass Strip Produced by Accumulative Roll-Bonding (ARB) Process
,”
Mater. Sci. Eng. A
,
527
(
3
), pp.
491
497
.
40.
Barmouz
,
M.
, and
Abrinia
,
K.
,
2013
, “
Materials Science and Engineering a using hardness measurement for Dislocation Densities Determination in FSPed Metal in Order to Evaluation of Strain Rate Effect on the Tensile Behavior
,”
Mater. Sci. Eng. A
,
559
, pp.
917
919
.
41.
Bacca
,
M.
,
Hayhurst
,
D. R.
, and
Mcmeeking
,
R. M.
,
2015
, “
Continuous Dynamic Recrystallization During Severe Plastic Deformation
,”
Mech. Mater.
,
90
, pp.
148
156
.
You do not currently have access to this content.