Additive manufacturing is driving major innovations in many areas such as biomedical engineering. Recent advances have enabled three-dimensional (3D) printing of biocompatible materials and cells into complex 3D functional living tissues and organs using bio-printable materials (i.e., bioink). Inkjet-based bioprinting fabricates the tissue and organ constructs by ejecting droplets onto a substrate. Compared with microextrusion-based and laser-assisted bioprinting, it is very difficult to predict and control the droplet formation process (e.g., droplet velocity and volume). To address this issue, this paper presents a new data-driven approach to predicting droplet velocity and volume in the inkjet-based bioprinting process. An imaging system was used to monitor the droplet formation process. To investigate the effects of polymer concentration, excitation voltage, dwell time, and rise time on droplet velocity and volume, a full factorial design of experiments (DOE) was conducted. Two predictive models were developed to predict droplet velocity and volume using ensemble learning. The accuracy of the two predictive models was measured using the root-mean-square error (RMSE), relative error (RE), and coefficient of determination (R2). Experimental results have shown that the predictive models are capable of predicting droplet velocity and volume with sufficient accuracy.

References

References
1.
Guillemot
,
F.
,
Mironov
,
V.
, and
Nakamura
,
M.
,
2010
, “
Bioprinting Is Coming of Age: Report From the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09)
,”
Biofabrication
,
2
(
1
), p.
010201
.
2.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
.
3.
Xu
,
C.
,
Chai
,
W.
,
Huang
,
Y.
, and
Markwald
,
R. R.
,
2012
, “
Scaffold‐Free Inkjet Printing of Three‐Dimensional Zigzag Cellular Tubes
,”
Biotechnol. Bioeng.
,
109
(
12
), pp.
3152
3160
.
4.
Xu
,
C.
,
Zhang
,
Z.
,
Christensen
,
K.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Freeform Vertical and Horizontal Fabrication of Alginate-Based Vascular-like Tubular Constructs Using Inkjetting
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061020
.
5.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.
6.
Ozbolat
,
I. T.
, and
Hospodiuk
,
M.
,
2016
, “
Current Advances and Future Perspectives in Extrusion-Based Bioprinting
,”
Biomaterials
,
76
, pp.
321
343
.
7.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
8.
Herran
,
C. L.
,
Wang
,
W.
,
Huang
,
Y.
,
Mironov
,
V.
, and
Markwald
,
R.
,
2010
, “
Parametric Study of Acoustic Excitation-Based Glycerol-Water Microsphere Fabrication in Single Nozzle Jetting
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051001
.
9.
Herran
,
C. L.
, and
Huang
,
Y.
,
2012
, “
Alginate Microsphere Fabrication Using Bipolar Wave-Based Drop-on-Demand Jetting
,”
J. Manuf. Processes
,
14
(
2
), pp.
98
106
.
10.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann.
,
57
(
2
), pp.
601
620
.
11.
Ozbolat
,
I. T.
,
2015
, “
Scaffold-Based or Scaffold-Free Bioprinting: Competing or Complementing Approaches?
,”
ASME J. Nanotechnol. Eng. Med.
,
6
(
2
), p.
024701
.
12.
Hospodiuk
,
M.
,
Dey
,
M.
,
Sosnoski
,
D.
, and
Ozbolat
,
I. T.
,
2017
, “
The Bioink: A Comprehensive Review on Bioprintable Materials
,”
Biotechnol. Adv.
,
35
(
2
), pp.
217
239
.
13.
Gudapati
,
H.
,
Dey
,
M.
, and
Ozbolat
,
I.
,
2016
, “
A Comprehensive Review on Droplet-Based Bioprinting: Past, Present and Future
,”
Biomaterials
,
102
, pp.
20
42
.
14.
Duan
,
B.
,
2017
, “
State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
195
209
.
15.
Tsai
,
M.-H.
,
Hwang
,
W.-S.
, and
Chou
,
H.
,
2009
, “
The Micro-Droplet Behavior of a Molten Lead-Free Solder in an Inkjet Printing Process
,”
J. Micromech. Microeng.
,
19
(
12
), p.
125021
.
16.
Derby
,
B.
, and
Reis
,
N.
,
2003
, “
Inkjet Printing of Highly Loaded Particulate Suspensions
,”
MRS Bull.
,
28
(
11
), pp.
815
818
.
17.
Wang
,
T.
, and
Derby
,
B.
,
2005
, “
Ink‐Jet Printing and Sintering of PZT
,”
J. Am. Ceram. Soc.
,
88
(
8
), pp.
2053
2058
.
18.
Wang
,
X.
,
Carr
,
W. W.
,
Bucknall
,
D. G.
, and
Morris
,
J. F.
,
2012
, “
Drop-on-Demand Drop Formation of Colloidal Suspensions
,”
Int. J. Multiphase Flow
,
38
(
1
), pp.
17
26
.
19.
Xu
,
C.
,
Zhang
,
M.
,
Huang
,
Y.
,
Ogale
,
A.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Study of Droplet Formation Process During Drop-on-Demand Inkjetting of Living Cell-Laden Bioink
,”
Langmuir
,
30
(
30
), pp.
9130
9138
.
20.
Zhang
,
M.
,
Krishnamoorthy
,
S.
,
Song
,
H.
,
Zhang
,
Z.
, and
Xu
,
C.
,
2017
, “
Ligament Flow During Drop-on-Demand Inkjet Printing of Bioink Containing Living Cells
,”
J. Appl. Phys.
,
121
(
12
), p.
124904
.
21.
Christensen
,
K.
,
Xu
,
C.
,
Chai
,
W.
,
Zhang
,
Z.
,
Fu
,
J.
, and
Huang
,
Y.
,
2015
, “
Freeform Inkjet Printing of Cellular Structures With Bifurcations
,”
Biotechnol. Bioeng.
,
112
(
5
), pp.
1047
1055
.
22.
Xu
,
C.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Electric Field-Assisted Droplet Formation Using Piezoactuation-Based Drop-on-Demand Inkjet Printing
,”
J. Micromech. Microeng.
,
24
(
11
), p.
115011
.
23.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
24.
Liaw
,
A.
, and
Wiener
,
M.
,
2002
, “
Classification and Regression by Random Forest
,”
R. News
,
2
(
3
), pp.
18
22
.
25.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
26.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B (Methodological)
,
58
(1), pp.
267
288
.
27.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
28.
Schölkopf
,
B.
, and
Smola
,
A. J.
,
2002
,
Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
,
MIT press
,
Cambridge, MA
.
29.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
30.
Lawson
,
C. L.
, and
Hanson
,
R. J.
,
1995
,
Solving Least Squares Problems
,
Siam
, Philadelphia, PA.
31.
Zhang
,
Z.
,
Xu
,
C.
,
Xiong
,
R.
,
Chrisey
,
D. B.
, and
Huang
,
Y.
,
2017
, “
Effects of Living Cells on the Bioink Printability During Laser Printing
,”
Biomicrofluidics
,
11
(
3
), p.
034120
.
32.
Ding
,
H.
,
Dai
,
E.
,
Tourlomousis
,
F.
, and
Chang
,
R. C.
,
2017
, “
A Methodology for Quantifying Cell Density and Distribution in Multidimensional Bioprinted Gelatin-Alginate Constructs
,”
ASME
Paper No. MSEC2017-2853.
33.
Yu
,
Y.
,
Zhang
,
Y.
, and
Ozbolat
,
I. T.
,
2014
, “
A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061013
.
34.
Nishiyama
,
Y.
,
Nakamura
,
M.
,
Henmi
,
C.
,
Yamaguchi
,
K.
,
Mochizuki
,
S.
,
Nakagawa
,
H.
, and
Takiura
,
K.
,
2009
, “
Development of a Three-Dimensional Bioprinter: Construction of Cell Supporting Structures Using Hydrogel and State-of-the-Art Inkjet Technology
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
035001
.
35.
Michael
,
S.
,
Sorg
,
H.
,
Peck
,
C.-T.
,
Koch
,
L.
,
Deiwick
,
A.
,
Chichkov
,
B.
,
Vogt
,
P. M.
, and
Reimers
,
K.
,
2013
, “
Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-like Structures in the Dorsal Skin Fold Chamber in Mice
,”
PloS One
,
8
(
3
), p.
e57741
.
36.
Merceron
,
T. K.
,
Burt
,
M.
,
Seol
,
Y.-J.
,
Kang
,
H.-W.
,
Lee
,
S. J.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2015
, “
A 3D Bioprinted Complex Structure for Engineering the Muscle–Tendon Unit
,”
Biofabrication
,
7
(
3
), p.
035003
.
37.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2015
, “
Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,”
Comput.-Aided Des.
,
59
, pp.
1
14
.
38.
Rayleigh
,
L.
,
1878
, “
On the Instability of Jets
,”
Proc. London Math. Soc.
,
1
(
1
), pp.
4
13
.
39.
Bogy
,
D.
,
1979
, “
Drop Formation in a Circular Liquid Jet
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
207
228
.
You do not currently have access to this content.