Leakage directly affects the functional behavior of a product in engineering practice, and surface topography is one of the main factors in static seal to prevent leakage. This paper aims at monitoring the leakage in static sealing interface, using three-dimensional (3D) surface topography as an indicator. The 3D surface is measured by a high definition metrology (HDM) instrument that can generate millions of data points representing the entire surface. The monitoring approach proposes a series of novel surface leakage parameters including virtual gasket, contact area percentage (CAP), void volume (VV), and relative void volume (SWvoid) as indicators. An individual control chart is adopted to monitor the leakage surface of the successive machining process. Meantime, based on the Persson contact mechanics and percolation theory, the threshold of leakage parameter is found using finite element modeling (FEM). Experimental results indicate that the proposed monitoring method is valid to precontrol the machining process and prevent leakage occurring.

References

References
1.
Flitney
,
R. K.
,
2011
,
Seals and Sealing Handbook
,
Elsevier
, Oxford, UK.
2.
Persson
,
B. N. J.
, and
Yang
,
C.
,
2008
, “
Theory of the Leak-Rate of Seals
,”
J. Phys.: Condens. Matter
,
20
(
31
), p.
315011
.
3.
Aharony
,
A.
, and
Stauffer
,
D.
,
2003
,
Introduction to Percolation Theory
,
Taylor & Francis
, London.
4.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Creton
,
C.
, and
Peveri
,
V.
,
2004
, “
Contact Area Between a Viscoelastic Solid and a Hard, Randomly Rough, Substrate
,”
J. Chem. Phys.
,
120
(
18
), pp.
8779
8793
.
5.
Lorenz
,
B.
, and
Persson
,
B. N. J.
,
2009
, “
Leak Rate of Seals: Comparison of Theory With Experiment
,”
Europhys. Lett.
,
86
(
4
), p.
44006
.
6.
Lorenz
,
B.
, and
Persson
,
B. N. J.
,
2010
, “
Leak Rate of Seals: Effective-Medium Theory and Comparison With Experiment
,”
Eur. Phys. J. E
,
31
(
2
), pp.
159
167
.
7.
Bottiglione
,
F.
,
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
,
2009
, “
Leakage Mechanism in Flat Seals
,”
J. Appl. Phys.
,
106
(
10
), p.
104902
.
8.
Bottiglione
,
F.
,
Carbone
,
G.
, and
Mantriota
,
G.
,
2009
, “
Fluid Leakage in Seals: An Approach Based on Percolation Theory
,”
Tribol. Int.
,
42
(
5
), pp.
731
737
.
9.
Marie
,
C.
, and
Lasseux
,
D.
,
2007
, “
Experimental Leak-Rate Measurement Through a Static Metal Seal
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
799
805
.
10.
Robbe-Valloire
,
F.
, and
Prat
,
M.
,
2008
, “
A Model for Face-Turned Surface Microgeometry. Application to the Analysis of Metallic Static Seals
,”
Wear
,
264
(
11–12
), pp.
980
989
.
11.
Okada
,
H.
,
Itoh
,
T.
, and
Suga
,
T.
,
2008
, “
The Influence of Surface Profiles on Leakage in Room Temperature Seal-Bonding
,”
Sens. Actuators, A
,
144
(
1
), pp.
124
129
.
12.
Haruyama
,
S.
,
Nurhadiyanto
,
D.
,
Choiron
,
M. A.
, and
Kaminishi
,
K.
,
2013
, “
Influence of Surface Roughness on Leakage of New Metal Gasket
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
146
154
.
13.
Marie
,
C.
,
Lasseux
,
D.
,
Zahouani
,
H.
, and
Sainsot
,
P.
,
2003
, “
An Integrated Approach to Characterize Liquid Leakage Through Metal Contact Seal
,”
Eur. J. Mech. Environ. Eng.
,
48
(
2
), pp.
81
86
.
14.
Ledoux
,
Y.
,
Lasseux
,
D.
,
Favreliere
,
H.
,
Samper
,
S.
, and
Grandjean
,
J.
,
2011
, “
On the Dependence of Static Flat Seal Efficiency to Surface Defects
,”
Int. J. Pressure Vessels Piping
,
88
(
11–12
), pp.
518
529
.
15.
Malburg
,
M. C.
,
2003
, “
Surface Profile Analysis for Conformable Interfaces
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
624
627
.
16.
Liao
,
Y.
,
Stephenson
,
D. A.
, and
Ni
,
J.
,
2012
, “
Multiple-Scale Wavelet Decomposition, 3D Surface Feature Exaction and Applications
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011005
.
17.
Ren
,
J.
,
Park
,
C.
, and
Wang
,
H.
,
2018
, “
Stochastic Modeling and Diagnosis of Leak Areas for Surface Assembly
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041011
.
18.
Arghavani
,
J.
,
Derenne
,
M.
, and
Marchand
,
L.
,
2002
, “
Prediction of Gasket Leakage Rate and Sealing Performance Through Fuzzy Logic
,”
Int. J. Adv. Manuf. Technol.
,
20
(
8
), pp.
612
620
.
19.
Xin
,
L.
, and
Gaoliang
,
P.
,
2016
, “
Research on Leakage Prediction Calculation Method for Static Seal Ring in Underground Equipments
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2635
2641
.
20.
Huang
,
Z.
,
Shih
,
A. J.
, and
Ni
,
J.
,
2006
, “
Laser Interferometry Hologram Registration for Three-Dimensional Precision Measurements
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
1006
1013
.
21.
Wang
,
M.
,
Xi
,
L.
, and
Du
,
S.
,
2014
, “
3D Surface Form Error Evaluation Using High Definition Metrology
,”
Precis. Eng.
,
38
(
1
), pp.
230
236
.
22.
Du
,
S.
, and
Fei
,
L.
,
2015
, “
Co-Kriging Method for Form Error Estimation Incorporating Condition Variable Measurements
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041003
.
23.
Du
,
S.
,
Liu
,
C.
, and
Huang
,
D.
,
2015
, “
A Shearlet-Based Separation Method of 3D Engineering Surface Using High Definition Metrology
,”
Precis. Eng.
,
40
, pp.
55
73
.
24.
Wang
,
M.
,
Shao
,
Y.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
A Diffusion Filter for Discontinuous Surface Measured by High Definition Metrology
,”
Int. J. Precis. Eng. Manuf.
,
16
(
10
), pp.
2057
2062
.
25.
Du
,
S.
,
Liu
,
T.
,
Huang
,
D.
, and
Li
,
G.
,
2018
, “
A Fast and Adaptive Bi-Dimensional Empirical Mode Decomposition Approach for Filtering of Workpiece Surfaces Using High Definition Metrology
,”
J. Manuf. Syst.
,
46
, pp.
247
263
.
26.
Du
,
S.
,
Liu
,
C.
, and
Xi
,
L.
,
2014
, “
A Selective Multiclass Support Vector Machine Ensemble Classifier for Engineering Surface Classification Using High Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011003
.
27.
Huang
,
D.
,
Du
,
S.
,
Li
,
G.
, and
Wu
,
Z.
,
2017
, “
A Systematic Approach for Online Minimizing Volume Difference of Multiple Chambers in Machining Processes Based on High-Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081003
.
28.
Shao
,
Y.
,
Du
,
S.
, and
Xi
,
L.
, “
3D Machined Surface Topography Forecasting With Space-Time Multioutput Support Vector Regression Using High Definition Metrology
,”
37th Computers and Information in Engineering Conference
, Vol.
1
, p.
V001T002A069
.
29.
Wang
,
M.
,
Ken
,
T.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
Tool Wear Monitoring of Wiper Inserts in Multi-Insert Face Milling Using Three-Dimensional Surface Form Indicators
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031006
.
30.
ISO,
2015
, “Geometrical Product Specifications (GPS)-Filtration—Part 22: Linear Profile Filters: Spline Filter,”
International Organization for Standardization
, Geneva,
Switzerland
, Standard No.
ISO 16610-22:2015
.
31.
ISO
,
2015
, “Geometrical Product Specifications (GPS)-Filtration—Part 1: Overview and Basic Concepts,”
International Organization for Standardization
, Geneva,
Switzerland
, Standard No. ISO 16610-1:2015.
32.
Krystek
,
M.
,
1996
, “
Form Filtering by Splines
,”
Measurement
,
18
(
1
), pp.
9
15
.
33.
Maragos
,
P.
, and
Schafer
,
R.
,
1987
, “
Morphological Filters—Part I: Their Set-Theoretic Analysis and Relations to Linear Shift-Invariant Filters
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
35
(
8
), pp.
1153
1169
.
34.
ISO
,
2015
, “Geometrical Product Specifications (GPS)-Filtration—Part 40: Morphological Profile Filters: Basic Concepts,”
International Organization for Standardization
, Geneva,
Switzerland
, Standard No.
ISO 16610-40:2015
.
35.
ISO
,
2015
, “Geometrical Product Specifications (GPS)-Filtration—Part 41: Morphological Profile Filters: Disk and Horizontal Line-Segment Filters,”
International Organization for Standardization
, Geneva,
Switzerland
, Standard No.
ISO 16610-41:2015
.
36.
ISO
,
2015
, “Geometrical Product Specifications (GPS)-Filtration—Part 85: Morphological Areal Filters: Segmentation,”
International Organization for Standardization
, Geneva,
Switzerland
, Standard No.
ISO 16610-85:2015
.
37.
ISO
,
2012
, “Geometrical Product Specifications (GPS)-Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters,”
International Organization for Standardization
, Geneva,
Switzerland
, Standard No.
ISO 25178-2:2012
.
38.
ISO
,
1997
, “Geometrical Product Specifications (GPS)-Surface Texture: Profile Method: Terms, Definitions and Surface Texture Parameters,”
International Organization for Standardization
, Geneva,
Switzerland
, Standard No.
ISO 4287:1997
.
39.
Hyun
,
S.
,
Pel
,
L.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
,
2004
, “
Finite-Element Analysis of Contact Between Elastic Self-Affine Surfaces
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
,
70
(
2 Pt 2
), p.
026117
.
40.
Megalingam
,
A.
, and
Mayuram
,
M. M.
,
2012
, “
Comparative Contact Analysis Study of Finite Element Method Based Deterministic, Simplified Multi-Asperity and Modified Statistical Contact Models
,”
ASME J. Tribol.
,
134
(
1
), p.
014503
.
41.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.