The dynamic response of thin-walled parts becomes time and tool position dependent due to material removal along the toolpath. This article proposes a new reduced-order workpiece dynamic parameters update model using substructuring and perturbation methods. The removed volumes between discrete locations along the toolpath are defined as substructures of the initial global workpiece. The dynamically reduced-order initial workpiece structure and the removed substructures are obtained with model order reduction techniques. Equations of motion of the workpiece are updated in time-domain by rigidly coupling fictitious substructures having the negative mass and stiffness of the removed material. Instead of solving the generalized eigenvalue problem repeatedly along the toolpath, the mode shapes of the in-process workpiece are perturbed using the mass and stiffness of the removed substructures. Convergence of the perturbation is improved by integrating a vector sequence convergence accelerating algorithm. The corresponding updated mode frequencies are evaluated using Rayleigh Quotient with the perturbed mode shapes. The proposed reduced-order time-domain dynamics update model is verified in five-axis ball-end milling tests on a thin-walled twisted fan blade, and its predictions are also compared against the authors’ previously developed frequency-domain reduced-order model. It is shown that the newly introduced model is ∼4 times more computationally efficient than the frequency-domain model.

References

References
1.
Elbestawi
,
M. A.
, and
Sagherian
,
R.
,
1991
, “
Dynamic Modeling for the Prediction of Surface Errors in the Milling of Thin-Walled Sections
,”
J. Mater. Process. Technol.
,
25
(
2
), pp.
215
228
.
2.
Budak
,
E.
, and
Altintas
,
Y.
,
1995
, “
Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates
,”
Int. J. Mach. Tools Manuf.
,
35
(
3
), pp.
459
476
.
3.
Tsai
,
M.-P.
,
Tsai
,
N.-C.
, and
Yeh
,
C.-W.
,
2016
, “
On Milling of Thin-Wall Conical and Tubular Workpieces
,”
Mech. Syst. Signal Process.
,
72–73
, pp. 395–
408
.
4.
Koike
,
Y.
,
Matsubara
,
A.
, and
Yamaji
,
I.
,
2013
, “
Design Method of Material Removal Process for Minimizing Workpiece Displacement at Cutting Point
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
419
422
.
5.
Bravo
,
U.
,
Altuzarra
,
O.
,
López de Lacalle
,
L. N.
,
Sánchez
,
J. A.
, and
Campa
,
F. J.
,
2005
, “
Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1669
1680
.
6.
Ding
,
Y.
, and
Zhu
,
L.
,
2016
, “
Investigation on Chatter Stability of Thin-Walled Parts Considering Its Flexibility Based on Finite Element Analysis
,”
Int. J. Adv. Manuf. Technol.
, epub.
7.
Li
,
Z.
,
Sun
,
Y.
, and
Guo
,
D.
,
2017
, “
Chatter Prediction Utilizing Stability Lobes With Process Damping in Finish Milling of Titanium Alloy Thin-Walled Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
89
(9–12), pp. 2663–2674.
8.
Song
,
Q.
,
Ai
,
X.
, and
Tang
,
W.
,
2011
, “
Prediction of Simultaneous Dynamic Stability Limit of Time–Variable Parameters System in Thin-Walled Workpiece High-Speed Milling Processes
,”
Int. J. Adv. Manuf. Technol.
,
55
(
9–12
), pp.
883
889
.
9.
Thevenot
,
V.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Cazenave-Larroche
,
G.
,
2006
, “
Influence of Material Removal on the Dynamic Behaviour of Thin-Walled Structures in Peripheral Milling
,”
Mach. Sci. Technol.
,
10
(
3
), pp.
275
287
.
10.
Adetoro
,
O. B.
,
Sim
,
W. M.
, and
Wen
,
P. H.
,
2010
, “
An Improved Prediction of Stability Lobes Using Nonlinear Thin Wall Dynamics
,”
J. Mater. Process. Technol.
,
210
(
6–7
), pp.
969
979
.
11.
Campa
,
F. J.
,
Lopez de Lacalle
,
L. N.
, and
Celaya
,
A.
,
2011
, “
Chatter Avoidance in the Milling of Thin Floors With Bull-Nose End Mills: Model and Stability Diagrams
,”
Int. J. Mach. Tools Manuf.
,
51
(
1
), pp.
43
53
.
12.
Zhou
,
X.
,
Zhang
,
D.
,
Luo
,
M.
, and
Wu
,
B.
,
2014
, “
Toolpath Dependent Chatter Suppression in Multi-Axis Milling of Hollow Fan Blades With Ball-End Cutter
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5
), pp.
643
651
.
13.
Urbikain
,
G.
,
López de Lacalle
,
L. N.
,
Campa
,
F. J.
,
Fernández
,
A.
, and
Elías
,
A.
,
2012
, “
Stability Prediction in Straight Turning of a Flexible Workpiece by Collocation Method
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
73
81
.
14.
Fischer
,
A.
,
Eberhard
,
P.
, and
Ambrósio
,
J.
,
2013
, “
Parametric Flexible Multibody Model for Material Removal During Turning
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011007
.
15.
Kersting
,
P.
, and
Biermann
,
D.
,
2014
, “
Modeling Techniques for Simulating Workpiece Deflections in NC Milling
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
48
54
.
16.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.
17.
Ismail
,
F.
, and
Ziaei
,
R.
,
2002
, “
Chatter Suppression in Five-Axis Machining of Flexible Parts
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
115
122
.
18.
Ahmadi
,
K.
,
2017
, “
Finite Strip Modeling of the Varying Dynamics of Thin-Walled Pocket Structures During Machining
,”
Int. J. Adv. Manuf. Technol.
,
89
(9–12), pp. 2691–2699.
19.
Meshreki
,
M.
,
Attia
,
H.
, and
Kövecses
,
J.
,
2011
, “
Development of a New Model for the Varying Dynamics of Flexible Pocket-Structures During Machining
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041002
.
20.
Song
,
Q.
,
Liu
,
Z.
,
Wan
,
Y.
,
Ju
,
G.
, and
Shi
,
J.
,
2015
, “
Application of Sherman–Morrison–Woodbury Formulas in Instantaneous Dynamic of Peripheral Milling for Thin-Walled Component
,”
Int. J. Mech. Sci.
,
96–97
, pp.
79
90
.
21.
Yang
,
Y.
,
Zhang
,
W.-H.
,
Ma
,
Y.-C.
, and
Wan
,
M.
,
2016
, “
Chatter Prediction for the Peripheral Milling of Thin-Walled Workpieces With Curved Surfaces
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
36
48
.
22.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Frequency Domain Prediction of Varying Thin-Walled Workpiece Dynamics in Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071013
.
23.
Van der Valk
,
P. L. C.
,
2010
, “Model Reduction and Interface Modeling in Dynamic Substructuring: Application to a Multi-Megawatt Wind Turbine,”
M.Sc. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3Ae7cfd85d-20f1-477d-98a3-59daa7766918
24.
Chen
,
J. C.
, and
Wada
,
B. K.
,
1977
, “
Matrix Perturbation for Structural Dynamic Analysis
,”
AIAA J.
,
15
(
8
), pp.
1095
1100
.
25.
Chen
,
S. H.
,
Wu
,
X. M.
, and
Yang
,
Z. J.
,
2006
, “
Eigensolution Reanalysis of Modified Structures Using Epsilon-Algorithm
,”
Int. J. Numer. Methods Eng.
,
66
(
13
), pp.
2115
2130
.
26.
Brandon
,
J. A.
,
1990
,
Strategies for Structural Dynamic Modification
,
Research Studies Press
,
Taunton, UK
.
27.
Jezequel
,
L.
,
1990
, “
Procedure to Reduce the Effects of Modal Truncation in Eigensolutionreanalysis
,”
AIAA J.
,
28
(
5
), pp.
896
902
.
28.
Brandon
,
J. A.
,
1984
, “
Derivation and Significance of Second-Order Modal Design Sensitivities
,”
AIAA J.
,
22
(
5
), pp.
723
724
.
29.
Brezinski
,
C.
,
2000
, “
Convergence Acceleration During the 20th Century
,”
J. Comput. Appl. Math.
,
122
(
1–2
), pp.
1
21
.
30.
Chen
,
S. H.
,
Ma
,
L.
, and
Meng
,
G.
,
2008
, “
Dynamic Response Reanalysis for Modified Structures Under Arbitrary Excitation Using Epsilon-Algorithm
,”
Comput. Struct.
,
86
(
23–24
), pp.
2095
2101
.
31.
Roberts
,
D. E.
,
1996
, “
On the Convergence of Rows of Vector Padé Approximants
,”
J. Comput. Appl. Math.
,
70
(
1
), pp.
95
109
.
32.
Parlett
,
B.
,
1998
,
The Symmetric Eigenvalue Problem
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
33.
Kammer
,
D. C.
,
1991
, “
Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
251
259
.
34.
Li
,
D. S.
,
Li
,
H. N.
, and
Fritzen
,
C. P.
,
2007
, “
The Connection Between Effective Independence and Modal Kinetic Energy Methods for Sensor Placement
,”
J. Sound Vib.
,
305
(
4–5
), pp.
945
955
.
35.
Wilkinson
,
J. H.
,
1965
,
The Algebraic Eigenvalue Problem
,
Oxford University Press
,
London
.
36.
O'Callahan
,
J.
,
Avitabile
,
P.
, and
Riemer
,
R.
,
1989
, “
System Equivalent Reduction Expansion Process (SEREP)
,”
Seventh International Modal Analysis Conference (IMAC)
, Las Vegas, NV, Jan. 30–Feb. 2, pp.
29
37
.
37.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
,
1995
, “
Model Reduction Using Dynamic and Iterated IRS Techniques
,”
J. Sound Vib.
,
186
(
2
), pp.
311
323
.
38.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
.
You do not currently have access to this content.