The purpose of this study was to investigate the advantages of laser surface melting for improving wetting over the traditional approach. For comparison, kovar alloy was preoxidized in atmosphere at 700 °C for 10 min, and then wetted with borosilicate glass powder at 1100 °C with different holding time in atmosphere. The proposed approach used a Nd:YAG laser to melt the surface of the kovar alloy sample in atmosphere, then wetted with borosilicate glass powder at 1100 °C with the same holding time. The laser melted surface shows a decrease in contact angle (CA) from 47.5 deg to 38 deg after 100 min. X-ray photoelectron spectroscopy (XPS) analysis shows that the surface and adjacent depth have higher concentration of FeO for laser treated kovar (Kovar(L)) than that on traditional thermal treated kovar (kovar(P)). This is attributed to the following improved wetting and diffusion process. The adhesive oxide layer formed on kovar (L) may enhance the oxygen diffusion into the substrate and iron diffusion outward to form an outside layer. This is an another way to enhance the wetting and diffusion process when compared to the delaminated oxide scales formed on kovar (P) surface. The diffusion mechanisms were discussed for both approaches. Scanning electron microscope (SEM) revealed that an iron oxide interlayer in the joint existed under both conditions. Fayalite nucleated on the iron oxide layer alloy and grew into the glass. In both cases, neither Co nor Ni were involved in the chemical bonding during wetting process. The work has shown that laser surface melting can be used to alter the wetting and diffusion characteristics of kovar alloy onto borosilicate glass.

References

References
1.
do Nascimento
,
R. M.
,
Martinelli
,
A. E.
, and
Buschinelli
,
A. J. A.
,
2003
, “
Recent Advances in Metal-Ceramic Brazing
,”
Ceramica
,
49
(
312
), pp.
178
198
.
2.
Panjawat
,
K.
,
Grant
,
B.
, and
Yao
,
Y. L.
,
2015
, “
Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031004
.
3.
Bian
,
D. K.
,
Bradley
,
R. B.
,
Shim
,
D. J.
,
Marshall
,
J.
, and
Lawrence Yao
,
Y. L.
,
2017
, “
Interlaminar Toughening of GFRP—Part I: Bonding Improvement Through Diffusion and Precipitation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071010
.
4.
Zhang
,
M. Y.
, and
Gary
,
J. C.
,
2011
, “
Continuous Mode Laser Coating of Hydroxyapatite/Titanium Nanoparticles on Metallic Implants: Multiphysics Simulation and Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021010
.
5.
Zanchetta
,
A.
,
Lefort
,
P.
, and
Gabbay
,
E.
,
1995
, “
Thermal Expansion and Adhesion of Ceramic to Metal Sealings: Case of Porcelain-Kovar Junctions
,”
J. Eur. Ceram. Soc.
,
15
(
3
), pp.
233
238
.
6.
Wang
,
X. L.
,
Ou
,
D. R.
,
Shang
,
L.
,
Zhao
,
Z.
, and
Cheng
,
M. J.
,
2016
, “
Sealing Performance and Chemical Compatibility of SrO–La2O3–Al2O3–SiO2 Glasses With Bare and Coated Ferritic Alloy
,”
Ceram. Int.
,
42
(
12
), pp.
14168
14174
.
7.
Leone
,
P.
,
Lanzini
,
A.
,
Delhomme
,
B.
,
Villalba
,
G. A.
,
Santarelli
,
M.
,
Smeacetto
,
F.
,
Salvo
,
M.
, and
Ferraris
,
M.
,
2011
, “
Experimental Evaluation of Planar SOFC Single Unit Cell With Crofer22APU Plate Assembly
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
3
), p.
031009
.
8.
Zanchetta
,
A.
,
Lortholary
,
P.
, and
Lefort
,
P.
,
1995
, “
Ceramic to Metal Sealings: Interfacial Reactions Mechanism in a Porcelain-Kovar Junction
,”
J. Alloys Compd.
,
228
(
1
), pp.
86
95
.
9.
Peng
,
L.
,
Zhu
,
Q. S.
,
Xie
,
Z. H.
, and
Wang
,
P.
,
2016
, “
Interface Reactions Between Sealing Glass and Metal Interconnect Under Static and Dynamic Heat Treatment Conditions
,”
ASME J. Electrochem. Energy Convers. Storage
,
12
(
6
), p.
061009
.
10.
Peng
,
L.
,
Bai
,
Y.
, and
Zhu
,
Q. S.
,
2017
, “
Thermal Cycle Stability of Sealing Glass for 8YSZ Coated Cr-Containing Metal Interconnect
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
4
), p.
041002
.
11.
Chen
,
S. C.
, and
Vafai
,
K.
,
1992
, “
An Experimental Investigation of Free Surface Transport, Bifurcation, and Adhesion Phenomena as Related to a Hollow Glass Ampule and a Metallic Conductor
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
743
751
.
12.
Thompson
,
L. M.
,
Maughan
,
M. R.
,
Rink
,
K. K.
,
Blackketter
,
D. M.
, and
Stephens
,
R. R.
,
2006
, “
Thermal Induced Stresses in Bridge-Wire Initiator Glass-to-Metal Seals
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
300
306
.
13.
Howard
,
P. J.
, and
Szkoda
,
I.
,
2012
, “
Corrosion Resistance of SOFC and SOEC Glass-Ceramic Seal Materials in High Temperature Steam/Hydrogen
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
4
), p.
041009
.
14.
Kim
,
J. H.
,
Song
,
R. H.
, and
Shin
,
D. R.
,
2009
, “
Joining of Metallic Cap and Anode-Supported Tubular Solid Oxide Fuel Cell by Induction Brazing Process
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
3
), p.
031012
.
15.
Donald
,
I. W.
,
1993
, “
Review: Preparation, Properties, and Chemistry of Glass and Glass-Ceramicto Metal Seals and Coatings
,”
J. Mater. Sci.
,
28
(
11
), pp.
2841
2886
.
16.
Mantel
,
M.
,
2000
, “
Effect of Double Oxide Layer on Metal Glass Sealing
,”
J. Non-Cryst. Solids
,
273
(
1–3
), pp.
294
301
.
17.
Luo
,
D. W.
, and
Shen
,
Z. S.
,
2009
, “
Wetting and Spreading Behavior of Borosilicate Glass to Kovar
,”
J. Alloys Compd.
,
477
(
1
), pp.
407
413
.
18.
Trindade
,
V.
,
Krupp
,
U.
,
Hanjari
,
B. Z.
,
Yang
,
S. L.
,
Krupp
,
U.
, and
Christ
,
H. J.
,
2005
, “
High-Temperature Oxidation of Pure Fe and the Ferritic Steel 2.25Cr1Mo
,”
Mater. Res.
,
8
(
4
), pp.
365
369
.
19.
Geng
,
S. J.
,
Qi
,
S. J.
,
Zhao
,
Q. C.
,
Ma
,
Z. H.
,
Zhu
,
S. L.
, and
Wang
,
F. H.
,
2012
, “
Effect of Columnar Nano-Grain Structure on the Oxidation Behavior of Low-Cr Fe–Co–Ni Base Alloy in Air at 800 °C
,”
Mater. Lett.
,
80
(
1
), pp.
33
36
.
20.
Zhang
,
J. Q.
,
Peng
,
X.
,
Young
,
D. J.
, and
Wang
,
F. H.
,
2013
, “
Nano-Crystalline Coating to Improve Cyclic Oxidation Resistance of 304 Stainless Steel
,”
Surf. Coat. Technol.
,
217
(
25
), pp.
162
171
.
21.
Liu
,
L.
,
Yang
,
Z. G.
,
Zhang
,
C.
,
Ueda
,
M.
,
Kawamura
,
K.
, and
Maruyama
,
T.
,
2015
, “
Effect of Grain Size on the Oxidation of Fe–13Cr–5Ni Alloy at 973 K in Ar–21 vol%O2
,”
Corros. Sci.
,
91
, pp.
195
202
.
22.
Waugh
,
D. G.
,
Lawrence
,
J.
, and
Brown
,
E. M.
,
2012
, “
Osteoblast Cell Response to a CO2 Laser Modified Polymeric Material
,”
Opt. Lasers Eng.
,
50
(
2
), pp.
236
247
.
23.
Waugh
,
D. G.
, and
Lawrence
,
J.
,
2011
, “
Wettability and Osteoblast Cell Response Modulation Through UV Laser Processing of Nylon 6,6
,”
Appl. Surf. Sci.
,
257
(
21
), pp.
8798
8812
.
24.
Kietzig
,
A. M.
,
Hatzikiriakos
,
S. G.
, and
Englezos
,
P.
,
2009
, “
Patterned Superhydrophobic Metallic Surfaces
,”
Langmuir
,
25
(
8
), pp.
4821
4827
.
25.
Silvennoinen
,
M.
,
2010
, “
Controlling the Hydrophobic Properties of Material Surface Using Femtosecond Ablation
,”
J. Laser Micro/Nanoeng.
,
5
(
1
), pp.
97
98
.
26.
Bizi-Bandoki
,
P.
,
Benayoun
,
S.
,
Valette
,
S.
,
Beaugiraud
,
B.
, and
Audouard
,
E.
,
2011
, “
Modifications of Roughness and Wettability Properties of Metals Induced by Femtosecond Laser Treatment
,”
Appl. Surf. Sci.
,
257
(
12
), pp.
5213
5218
.
27.
Kam
,
D. H.
,
Bhattacharya
,
S.
, and
Mazumder
,
J.
,
2012
, “
Control of the Wetting Properties of an AISI 316L Stainless Steel Surface by Femtosecond Laser-Induced Surface Modification
,”
J. Micromech. Microeng.
,
22
(10), p. 105019.
28.
Lawrence
,
J.
, and
Li
,
L.
,
1999
, “
Carbon Steel Wettability Characteristics Enhancement for Improved Enamelling Using a 1.2 kW High Power Diode Laser
,”
Opt. Laser. Eng.
,
32
(
4
), pp.
353
365
.
29.
Loughridge
,
F. A.
, and
Wong
,
W. S.
,
2013
, “
Improved Reliability of Soft Glass to Metal Vacuum Tight Seals
,”
Sixth National Symposium Vacuum Technology Transactions
, Philadelphia, PA, Oct. 7–9, pp.
283
287
.
30.
Fujii
,
T.
,
Groot
,
F. M.
, and
Sawatzky
,
G. A.
,
1999
, “
In Situ XPS Analysis of Various Iron Oxide Films Grown by NO2-Assisted Molecular-Beam Epitaxy
,”
Phys. Rev B.
,
59
(
4
), pp.
3195
3202
.
31.
Muhler
,
M.
,
Schlogl
,
R.
, and
Ertl
,
G.
,
1992
, “
The Nature of the Iron-Based Catalyst for Dehydrogenation of Ethylbenzene to Styrene 2—Surface Chemistry of the Active Phase
,”
J. Catal.
,
138
(
2
), pp.
413
444
.
32.
Tripp
,
H. P.
, and
King
,
B. W.
,
1955
, “
Thermodynamic Data on Oxides at Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
38
(
12
), pp.
432
437
33.
David
,
J. Y.
,
2016
,
High Temperature Oxidation and Corrosion of Metals
,
2nd ed.
,
Elsevier
,
London
, pp.
85
144
.
34.
Lawrence
,
J.
, and
Li
,
L.
,
1999
, “
Wettability Characteristics of an Al2O3/SiO2-Based Ceramic Modified With CO2, Nd:YAG, Excimer and High-Power Diode Lasers
,”
J. Phys. D
,
32
(
10
), pp.
1075
1082
.
35.
Chern
,
T. S.
, and
Tsai
,
H. L.
,
2007
, “
Wetting and Sealing of Interface Between 7056 Glass and Kovar Alloy
,”
Mater. Chem. Phys.
,
104
(
2–3
), pp.
472
478
.
You do not currently have access to this content.