Of various tissues being fabricated using bioprinting, three-dimensional (3D) soft tubular structures have often been the focus since they address the need for printable vasculature throughout a thick tissue and offer potential as perfusable platforms for biological studies. Drop-on-demand inkjetting has been favored as an effective technique to print such 3D soft tubular structures from various hydrogel bioinks. During the buoyancy-enabled inkjet fabrication of hydrogel-based soft tubular structures, they remain submerged in a solution, which crosslinks the printed structures and provides a supporting buoyant force. However, because of the low stiffness of the structures, the structural deformation of printed tubes poses a significant challenge to the process effectiveness and efficiency. To overcome this structural deformation during buoyancy-enabled inkjet printing, predictive compensation approaches are developed to incorporate deformation allowance into the designed shape. Circumferential deformation is addressed by a four-zone approach, which includes base, circular, vertical, and spanning zones for the determination of a designed cross section or compensated printing path. Axial deformation is addressed by the modification of the proposed circumferential compensation based on the distance of a given cross section to the junction of a branching tube. These approaches are found to enable the successful fabrication of straight and branching alginate tubular structures with nearly ideal geometry, providing a good foundation for the wide implementation of the buoyancy-enabled inkjetting technique. While inkjetting is studied herein as a model bioprinting process, the resulting knowledge also applies to other buoyancy-enabled bioprinting techniques.

References

References
1.
Ringeisen
,
B. R.
,
Pirlo
,
R. K.
,
Wu
,
P. K.
,
Boland
,
T.
,
Huang
,
Y.
,
Sun
,
W.
,
Hamid
,
Q.
, and
Chrisey
,
D. B.
,
2013
, “
Cell and Organ Printing Turns 15: Diverse Research to Commercial Transitions
,”
MRS Bull.
,
38
(
10
), pp.
834
843
.
2.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
3.
Boland
,
T.
,
Tao
,
X.
,
Damon
,
B. J.
,
Manley
,
B.
,
Kesari
,
P.
,
Jalota
,
S.
, and
Bhaduri
,
S.
,
2007
, “
Drop-on-Demand Printing of Cells and Materials for Designer Tissue Constructs
,”
Mat. Sci. Eng. C
,
27
(
3
), pp.
372
376
.
4.
Nishiyama
,
Y.
,
Nakamura
,
M.
,
Henmi
,
C.
,
Yamaguchi
,
K.
,
Mochizuki
,
S.
,
Nakagawa
,
H.
, and
Takiura
,
K.
,
2009
, “
Development of a Three-Dimensional Bioprinter: Construction of Cell Supporting Structures Using Hydrogel and State-of-the-Art Inkjet Technology
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
035001
.
5.
Xu
,
C.
,
Chai
,
W.
,
Huang
,
Y.
, and
Markwald
,
R. R.
,
2012
, “
Scaffold-Free Inkjet Printing of Three-Dimensional Zigzag Cellular Tubes
,”
Biotechnol. Bioeng.
,
109
(
12
), pp.
3152
3160
.
6.
Xu
,
C.
,
Christensen
,
K.
,
Zhang
,
Z.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2013
, “
Predictive Compensation-Enabled Horizontal Inkjet Printing of Alginate Tubular Constructs
,”
Manuf. Lett.
,
1
(
1
), pp.
28
32
.
7.
Christensen
,
K.
,
Xu
,
C.
,
Chai
,
W.
,
Zhang
,
Z.
,
Fu
,
J.
, and
Huang
,
Y.
,
2015
, “
Freeform Inkjet Printing of Cellular Structures With Bifurcations
,”
Biotech. Bioeng.
,
112
(
5
), pp.
1047
1055
.
8.
Yan
,
J.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2012
, “
Laser-Assisted Printing of Alginate Long Tubes and Annular Constructs
,”
Biofabrication
,
5
(
1
), p.
015002
.
9.
Xiong
,
R.
,
Zhang
,
Z.
,
Chai
,
W.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Freeform Drop-on-Demand Laser Printing of 3D Alginate and Cellular Constructs
,”
Biofabrication
,
7
(
4
), p.
045011
.
10.
Duan
,
B.
,
Hockaday
,
L.
,
Kang
,
K.
, and
Butcher
,
J.
,
2013
, “
3D Bioprinting Heterogeneous Aortic Valve Conduits With Alginate/Gelatin Hydrogels
,”
J. Biomed. Mater. Res. Part A
,
101A
(
5
), pp.
1255
1264
.
11.
Jin
,
Y.
,
Compaan
,
A.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Functional Nanoclay Suspension for Printing-then-Solidification of Liquid Materials
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20057
20066
.
12.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
.
13.
Skardal
,
A.
,
Zhang
,
J.
, and
Prestwich
,
G. D.
,
2010
, “
Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinked With Tetrahedral Polyethylene Glycol Tetracrylates
,”
Biomaterials
,
31
(
24
), pp.
6173
6181
.
14.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
15.
Miller
,
J.
,
Stevens
,
K.
,
Yang
,
M.
,
Baker
,
B.
,
Nguyen
,
D.
,
Cohen
,
D.
,
Toro
,
E.
,
Chen
,
A.
,
Galie
,
P.
,
Yu
,
X.
,
Chaturvedi
,
R.
,
Bhatia
,
S.
, and
Chen
,
S.
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nat. Mater.
,
11
(
9
), pp.
768
774
.
16.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A. S.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.
17.
Van Hoorick
,
J.
,
Declercq
,
H.
,
De Muynck
,
A.
,
Houben
,
A.
,
Van Hoorebeke
,
L.
,
Cornelissen
,
R.
,
Van Erps
,
J.
,
Thienpont
,
H.
,
Dubruel
,
P.
, and
Van Vlierberghe
,
A.
,
2015
, “
Indirect Additive Manufacturing as an Elegant Tool for the Production of Self-Supporting Low Density Gelatin Scaffolds
,”
J. Mater. Sci. Mater. Med.
,
26
(
10
), p.
247
.
18.
Xu
,
C.
,
Zhang
,
Z.
,
Christensen
,
K.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Freeform Vertical and Horizontal Fabrication of Alginate-Based Vascular-Like Tubular Constructs Using Inkjetting
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061020
.
19.
Armillotta
,
A.
,
2006
, “
Assessment of Surface Quality on Textured FDM Prototypes
,”
Rapid Prototyping J.
,
12
(
1
), pp.
35
41
.
20.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
SIGGRAPH Comput. Graph. (ACM)
,
20
(
4
), pp.
151
160
.
21.
McIntosh
,
J. J.
,
Danforth
,
S. C.
, and
Jamalabad
,
V. R.
,
1997
, “
Shrinkage and Deformation in Components Manufactured by Fused Deposition of Ceramics
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 11–13, pp.
159
166
.https://sffsymposium.engr.utexas.edu/Manuscripts/1997/1997-18-McIntosh.pdf
22.
Limaye
,
A. S.
, and
Rosen
,
D. W.
,
2006
, “
Compensation Zone Approach to Avoid Print-Through Errors in Mask Projection Stereolithography Builds
,”
Rapid Prototyping J.
,
12
(
5
), pp.
283
291
.
23.
Stopp
,
S.
,
Wolff
,
T.
,
Irlinger
,
F.
, and
Lueth
,
T.
,
2008
, “
A New Method for Printer Calibration and Contour Accuracy Manufacturing With 3D-Print Technology
,”
Rapid Prototyping J.
,
14
(
3
), pp.
167
172
.
24.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
,
Dasgupta
,
T.
, and
Epstein
,
D. J.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for 3D Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
.
25.
Schmutzler
,
C.
,
Zimmermann
,
A.
, and
Zaeh
,
M. F.
,
2016
, “
Compensating Warpage of 3D Printed Parts Using Free-Form Deformation
,”
Procedia CIRP
,
41
, pp.
1017
1022
.
26.
Nakamura
,
M.
,
Iwanaga
,
S.
,
Henmi
,
C.
,
Arai
,
K.
, and
Nishiyama
,
Y.
,
2010
, “
Biomatrices and Biomaterials for Future Developments of Bioprinting and Biofabrication
,”
Biofabrication
,
2
(
1
), p.
014110
.
27.
Sun
,
J.
, and
Tan
,
H.
,
2013
, “
Alginate-Based Biomaterials for Regenerative Medicine
,”
Mater.
,
6
(
4
), pp.
1285
1309
.
28.
Jin
,
Y.
,
Compaan
,
A.
,
Bhattacharjee
,
T.
, and
Huang
,
Y.
,
2016
, “
Granular Gel Support-Enabled Extrusion of Three-Dimensional Alginate and Cellular Structures
,”
Biofabrication
,
8
(
2
), p.
025016
.
You do not currently have access to this content.