Tube hydroforming (THF) is an important manufacturing technology for producing tube components by means of fluid pressure. In comparison to other basic forming processes like deep drawing, forming steps can be reduced and more complex shape is allowed. In this work, it was aimed to establish the forming limit curve (FLC) of stainless steel tube grade 304 for the THF process by using finite element (FE) simulations coupled with the Gurson–Tvergaard–Needleman (GTN) damage model as failure criterion. The parameters of the GTN model were obtained by metallography analysis, tensile test, plane strain test of the examined steel in combination with the direct current potential drop (DCPD) and digital image correlation (DIC) techniques. These parameters were well verified by comparing the predicted FLC of steel sheet with the experimental FLC gathered from the Nakazima test. Then, the FLC of steel tube 304 was established by FE simulations coupled with the damage model of tube bulging tests. During the bulge tests, pressure and axial feed were properly controlled in order to generate the left-hand FLC, while pressure and external force needed to be simultaneously incorporated for the right-hand FLC. Finally, the FLC was applied to evaluate material formability in an industrial THF process of the steel tube.

References

References
1.
Lang
,
L. H.
,
Wang
,
Z. R.
,
Kang
,
D. C.
,
Yuan
,
S. J.
,
Zhang
,
S. H.
,
Danckert
,
J.
, and
Nielsen
,
K. B.
,
2004
, “
Hydroforming Highlights: Sheet Hydroforming and Tube Hydroforming
,”
J. Mater. Process. Technol.
,
151
(1–3), pp.
165
177
.
2.
Hartl
,
C.
,
2005
, “
Research and Advances in Fundamentals and Industrial Applications of Hydroforming
,”
J. Mater. Process. Technol.
,
167
(2–3), pp.
383
392
.
3.
Lin
,
J. F.
, and
Yuan
,
S. J.
,
2009
, “
Influence of Internal Pressure on Hydroforming of Double Handles Crankshaft
,”
Mater. Sci. Eng. A
,
499
(1–2), pp.
208
211
.
4.
Xia
,
Z. C.
,
2001
, “
Failure Analysis of Tabular Hydroforming
,”
ASME J. Eng. Mater. Technol.
,
123
(4), pp.
423
429
.
5.
Chen
,
X. F.
,
Yu
,
Z. Q.
,
Hou
,
B.
,
Li
,
S. H.
, and
Lin
,
Z. Q.
,
2011
, “
A Theoretical and Experimental Study on Forming Limit Diagram for a Seamed Tube Hydroforming
,”
J. Mater. Process. Technol.
,
211
(12), pp.
2012
2021
.
6.
Hwang
,
Y. M.
,
Lin
,
Y. K.
, and
Chuang
,
H. C.
,
2009
, “
Forming Limit Diagrams of Tubular Materials by Bulge Tests
,”
J. Mater. Process. Technol.
,
209
(11), pp.
5024
5034
.
7.
Aydemir
,
A.
,
de Vree
,
J. H. P.
,
Brekelmansa
,
W. A. M.
,
Geers
,
M. G. D.
,
Sillekens
,
W. H.
, and
Werkhoven
,
R. J.
,
2005
, “
An Adaptive Simulation Approach Designed for Tube Hydroforming Processes
,”
J. Mater. Process. Technol.
,
159
(3), pp.
303
310
.
8.
Nikhare
,
C.
,
Weiss
,
M.
, and
Hodgson
,
P. D.
,
2009
, “
FEA Comparison of High and Low Pressure Tube Hydroforming of TRIP Steel
,”
Comput. Mater. Sci.
,
47
(1), pp.
146
152
.
9.
Mirzaali
,
M.
,
Seyedkashi
,
S. M. H.
,
Liaghat
,
G. H.
,
Moslemi Naeini
,
H.
,
Shojaee G
,
K.
, and
Moon
,
Y. H.
,
2012
, “
Application of Simulated Annealing Method to Pressure and Force Loading Optimization in Tube Hydroforming Process
,”
Int. J. Mech. Sci.
,
55
(1), pp.
78
84
.
10.
Thanakijkasem
,
P.
,
Pattarangkun
,
A.
,
Mahabunphachai
,
S.
,
Uthaisangsuk
,
V.
, and
Chutima
,
S.
,
2015
, “
Comparative Study of Finite Element Analysis in Tube Hydroforming of Stainless Steel 304
,”
Int. J. Automot. Technol.
,
16
(
4
), pp.
611
617
. −
11.
Thanakijkasem
,
P.
,
Uthaisangsuk
,
V.
,
Pattarangkun
,
A.
, and
Mahabunphachai
,
S.
,
2014
, “
Effect of Bright Annealing on Stainless Steel 304 Formability in Tube Hydroforming
,”
Int. J. Adv. Manuf. Technol.
,
73
(9–12), pp.
1341
1349
.
12.
Einolghozati
,
M.
,
Shirin
,
M. B.
, and
Assempour
,
A.
,
2013
, “
Application of Inverse Finite Element Method in Tube Hydroforming Modeling
,”
Appl. Math. Model.
,
37
(8), pp.
5913
5926
.
13.
Hashemi
,
S. J.
,
Naeini
,
H. M.
,
Liaghat
,
G.
,
Tafti
,
R. A.
, and
Rahmani
,
F.
,
2014
, “
Forming Limit Diagram of Aluminum AA6063 Tubes at High Temperatures by Bulge Tests
,”
J. Mech. Sci. Technol.
,
28
(
11
), pp.
4745
4752
.
14.
Teng
,
B.
,
Wang
,
W. N.
,
Liu
,
Y. Q.
, and
Yuan
,
S. J.
,
2014
, “
Bursting Prediction of Hydroforming Aluminum Alloy Tube Based on Gurson-Tvergaard-Needleman Damage Model
,”
Procedia Eng.
,
81
, pp.
2211
2216
.
15.
Dournaux
,
J. L.
,
Bouvier
,
S.
,
Aouafi
,
A.
, and
Vacher
,
P.
,
2009
, “
Full–Field Measurement Technique and Its Application to the Analysis of Materials Behaviour Under Plane Strain Mode
,”
Mater. Sci. Eng. A
,
500
(1–2), pp.
47
62
.
16.
Flores
,
P.
,
Tuninetti
,
V.
,
Gilles
,
G.
,
Gonry
,
P.
,
Duchene
,
L.
, and
Habraken
,
A. M.
,
2010
, “
Accurate Stress Computation in Plane Strain Tensile Tests for Sheet Metal Using Experimental Data
,”
J. Mater. Process. Technol.
,
210
(13), pp.
1772
1779
.
17.
Merklein
,
M.
,
Kuppert
,
A.
, and
Geiger
,
M.
,
2010
, “
Time Dependent Determination of Forming Limit Diagrams
,”
CIRP Ann. Manuf. Technol.
,
59
(1), pp.
295
298
.
18.
Wang
,
K. F.
,
Carsley
,
J. E.
,
He
,
B. Y.
,
Li
,
J. J.
, and
Zhang
,
L. H.
,
2014
, “
Measuring Forming Limit Strains With Digital Image Correlation Analysis
,”
J. Mater. Process. Technol.
,
214
(5), pp.
1120
1130
.
19.
Jocham
,
D.
,
Sunderkoetter
,
C.
,
Helmholz
,
R.
,
Marusch
,
H. E.
, and
Volk
,
W.
, 2014, “
Failure Prediction in Direct Press Hardening Through Virtual Forming Limit Curves Based on Measurable Material Properties
,”
Seventh Forming Technology Forum
, Enschede, The Netherlands, Sept. 15–16, pp.
75
80
. https://www.researchgate.net/publication/279757002_Failure_Prediction_in_direct_press_hardening_through_virtual_forming_limit_curves_based_on_measurable_material_properties
20.
Hosseini
,
S. F.
, and
Hadidi-Moud
,
S.
,
2016
, “
Application of the GTN Model in Ductile Fracture Prediction of 7075−T651 Aluminum Alloy
,”
J. Solid Mech.
,
8
(2), pp.
326
333
.http://www.sid.ir/en/VEWSSID/J_pdf/134420160207.pdf
21.
Nonn
,
A.
,
Cerrone
,
A. R.
,
Stallybrass
,
C.
, and
Meuser
,
H.
,
2013
, “
Microstructure−Based Modeling of High-Strength Line Pipe Steels
,”
Sixth International Pipeline Technology Conference
, Ostend, Belgium, Oct. 6–9, Paper No.
S35-03
.https://www.researchgate.net/publication/266388751_Microstructure-based_modeling_of_high-strength_linepipe_steels
22.
Benseddiq
,
N.
, and
Imad
,
A.
,
2008
, “
A Ductile Fracture Analysis Using a Local Damage Model
,”
Int. J. Pressure Vessels Piping
,
85
(4), pp.
219
227
.
23.
Wang
,
X. X.
,
Zhan
,
M.
,
Guo
,
J.
, and
Zhao
,
B.
,
2016
, “
Evaluating the Applicability of GTN Damage Model in Forward Tube Spinning of Aluminum Alloy
,”
Metals
,
6
(6), p. 136.
24.
Oh
,
C. S.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Baek
,
J. H.
, and
Kim
,
Y. P.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model
,”
Eng. Fract. Mech.
,
78
(1), pp.
124
137
.
25.
Steglich
,
D.
, and
Brocks
,
W.
,
1998
, “
Micromechanical Modeling of Damage and Fracture of Ductile Materials
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
(10), pp.
1175
1188
.
26.
Lian
,
J.
,
Sharaf
,
M.
,
Archie
,
F.
, and
Muenstermann
,
S.
,
2012
, “
A Hybrid Approach for Modelling of Plasticity and Failure Behaviour of Advanced High–Strength Steel Sheets
,”
Int. J. Damage Mech.
,
22
(2), pp.
188
218
.
27.
Jocham
,
D.
, and
Volk
,
W.
,
2016
, “
Numerical Determination of the Onset of Local Necking Using Time Dependent Evaluation Method and Dynamic Material Parameters
,”
J. Phys.: Conf. Ser.
,
734
(Part B), p.
032015
.
28.
Hwang
,
Y. M.
, and
Huang
,
L. S.
,
2005
, “
Friction Tests in Tube Hydroforming
,”
Proc. Inst. Mech. Eng. Part B
,
219
(8), pp.
587
594
.
29.
Hashemi
,
R.
,
Assempour
,
A.
, and
Abad
,
E. M. K.
,
2009
, “
Implementation of the Forming Limit Stress Diagram to Obtain Suitable Load Path in Tube Hydroforming Considering M–K Model
,”
Mater. Des.
,
30
(9), pp.
3545
3553
.
You do not currently have access to this content.