Localized rapid heating process utilizing carbide-bonded graphene-coated silicon molds is a high-efficiency and energy-saving technique for high-volume fabrication of polymer optics. The graphene coating is used as a rapid heating element because of its high thermal conductivity and low electrical resistivity. However, the optical property of molded polymer and its dependence on process conditions such as heat transfer have not been thoroughly investigated. In this research, finite element method (FEM) simulation was utilized to interpret temperature changes of the graphene coating and heat transfer between graphene and polymethylmethacrylate (PMMA) in localized rapid heating. Experiments were then carried out under different voltages to validate the numerical model. In addition, refractive index variation of the PMMA lens resulting from nonuniform thermal history in molding was demonstrated by simulation modeling as well. Finally, wavefront variation of a PMMA lens molded by localized rapid heating was first studied using an FEM model and then verified by optical measurements with a Shack–Hartmann wavefront sensor (SHWFS). The wavefront variation in a PMMA lens molded by conventional method was also measured. Compared with conventional molding process, localized rapid heating is shown to be a possible alternative for better optical performance with a much shorter cycle time.

References

References
1.
Firestone
,
G. C.
, and
Yi
,
A. Y.
,
2005
, “
Precision Compression Molding of Glass Microlenses and Microlens Arrays—An Experimental Study
,”
Appl. Opt.
,
44
(
29
), pp.
6115
6122
.
2.
Zhou
,
T.
,
Yan
,
J.
,
Masuda
,
J.
, and
Kuriyagawa
,
T.
,
2009
, “
Investigation on the Viscoelasticity of Optical Glass in Ultraprecision Lens Molding Process
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4484
4489
.
3.
Anurag
,
J.
, and
Yi
,
A. Y.
,
2005
, “
Numerical Modeling of Viscoelastic Stress Relaxation During Glass Lens Forming Process
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
530
535
.
4.
He
,
P.
,
Li
,
L.
,
Yu
,
J.
,
Huang
,
W.
,
Yen
,
Y.-C.
,
Lee
,
L. J.
, and
Yi
,
A. Y.
,
2013
, “
Graphene-Coated Si Mold for Precision Glass Optics Molding
,”
Opt. Lett.
,
38
(
14
), pp.
2625
2628
.
5.
Heckele
,
M.
,
Bacher
,
W.
, and
Müller
,
K. D.
,
1998
, “
Hot Embossing-The Molding Technique for Plastic Microstructures
,”
Microsyst. Technol.
,
4
(
3
), pp.
122
124
.
6.
Schift
,
H.
,
David
,
C.
,
Gabriel
,
M.
,
Gobrecht
,
J.
,
Heyderman
,
L. J.
,
Kaiser
,
W.
,
Köppel
,
S.
, and
Scandella
,
L.
,
2000
, “
Nanoreplication in Polymers Using Hot Embossing and Injection Molding
,”
Microelectron. Eng.
,
53
(
1–4
), pp.
171
174
.
7.
Kricka
,
L. J.
,
Fortina
,
P.
,
Panaro
,
N. J.
,
Wilding
,
P.
,
Alonso-Amigo
,
G.
, and
Becker
,
H.
,
2002
, “
Fabrication of Plastic Microchips by Hot Embossing
,”
Lab Chip
,
2
(
1
), pp.
1
4
.
8.
Heckele
,
M.
, and
Schomburg
,
W. K.
,
2003
, “
Review on Micro Molding of Thermoplastic Polymers
,”
J. Micromech. Microeng.
,
14
(
3
), p.
R1
.
9.
Choi
,
D.-S.
, and
Im
,
Y.-T.
,
1999
, “
Prediction of Shrinkage and Warpage in Consideration of Residual Stress in Integrated Simulation of Injection Molding
,”
Compos. Struct.
,
47
(
1
), pp.
655
665
.
10.
Xie
,
P.
,
He
,
P.
,
Yen
,
Y.-C.
,
Kwak
,
K. J.
,
Gallego-Perezd
,
D.
,
Chang
,
L.
,
Liao
,
W.-C.
,
Yi
,
A.
, and
Lee
,
L. J.
,
2014
, “
Rapid Hot Embossing of Polymer Microstructures Using Carbide-Bonded Graphene Coating on Silicon Stampers
,”
Surf. Coat. Technol.
,
258
, pp.
174
180
.
11.
Li
,
H.
,
He
,
P.
,
Yu
,
J.
,
Lee
,
L. J.
, and
Yi
,
A. Y.
,
2015
, “
Localized Rapid Heating Process for Precision Chalcogenide Glass Molding
,”
Opt. Lasers Eng.
,
73
, pp.
62
68
.
12.
Zhang
,
L.
,
Zhou
,
W.
, and
Yi
,
A. Y.
,
2017
, “
Rapid Localized Heating of Graphene Coating on a Silicon Mold by Induction for Precision Molding of Polymer Optics
,”
Opt. Lett.
,
42
(
7
), pp.
1369
1372
.
13.
Huang
,
W.
,
Yu
,
J.
,
Kwak
,
K. J.
,
Gallego-Perez
,
D.
,
Liao
,
W.-C.
,
Yang
,
H.
,
Ouyang
,
X.
,
Li
,
L.
,
Lu
,
W.
,
Lafyatis
,
G. P.
, and
Lee
,
L. J.
,
2013
, “
Atomic Carbide Bonding Leading to Superior Graphene Networks
,”
Adv. Mater.
,
25
(
33
), pp.
4668
4672
.
14.
Yan
,
J.
,
Zhou
,
T.
,
Masuda
,
J.
, and
Kuriyagawa
,
T.
,
2009
, “
Modeling High-Temperature Glass Molding Process by Coupling Heat Transfer and Viscous Deformation Analysis
,”
Precis. Eng.
,
33
(
2
), pp.
150
159
.
15.
Yi
,
A. Y.
, and
Anurag
,
J.
,
2005
, “
Compression Molding of Aspherical Glass Lenses—A Combined Experimental and Numerical Analysis
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
579
586
.
16.
Ritland
,
H. N.
,
1955
, “
Relation Between Refractive Index and Density of a Glass at Constant Temperature
,”
J. Am. Ceram. Soc.
,
38
(
2
), pp.
86
88
.
17.
Su
,
L.
,
Chen
,
Y.
,
Yi
,
A. Y.
,
Klocke
,
F.
, and
Pongs
,
G.
,
2008
, “
Refractive Index Variation in Compression Molding of Precision Glass optical Components
,”
Appl. Opt.
,
47
(
10
), pp.
1662
1667
.
18.
Cheng
,
J.
, and
Yao
,
Y. L.
,
2002
, “
Microstructure Integrated Modeling of Multiscan Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
379
388
.
19.
Miller
,
S. F.
, and
Shih
,
A. J.
,
2007
, “
Thermo-Mechanical Finite Element Modeling of the Friction Drilling Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
531
538
.
20.
Nasr
,
M. N. A.
,
2017
, “
On the Role of Different Strain Components, Material Plasticity, and Edge Effects When Predicting Machining-Induced Residual Stresses Using Finite Element Modeling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071014
.
21.
Zhou
,
J.
,
He
,
P.
,
Yu
,
J.
,
Lee
,
L. J.
,
Shen
,
L.
, and
Yi
,
A. Y.
,
2013
, “
Investigation on the Friction Coefficient Between Graphene-Coated Silicon and Glass Using Barrel Compression Test
,”
J. Vac. Sci. Technol. B
,
33
(
3
), p.
031213
.
You do not currently have access to this content.