Carbon fiber-reinforced plastics (CFRPs) are sustainable materials compared to others due to their distinctive properties and light weight. On the other hand, producing CFRP products with minimum manufacturing costs and high quality can be quite challenging. This research aims to formulate a mathematical model that determines the optimum manufacturing process/processing parameters and takes into consideration the effect of the selected processes on the quality of panels and the environmental impact surface roughness and percentage of voids are used as metrics to assess the desired quality level of the finished product. Energy consumption is used to quantify the environmental cost. Design of experiment (DOE) was performed to study the effect of varying the process parameters, namely application method, pressure, and temperature on the response variables. Regression models were used to model the response variables. A generalized model was developed and validated both numerically and experimentally. Results signify the need for a systematic approach to determine optimum manufacturing processes without resorting to trial and error.

References

References
1.
Plastics Europe
, 2006, “
Environmental Benefits of Fibre Reinforced
,” Plastics Europe, Association of Plastics Manufacturing, Brussels, Belgium, accessed Oct. 10, 2015, http://www.plasticseurope.org/documents/document/20100602173200-ceficarticle4environmentalbenefitsofgrp-20060803-002-en-v1.pdf
2.
Qiu
,
K. X.
,
Wang
,
C. D.
,
An
,
Q. L.
, and
Chen
,
M.
,
2014
, “
Defects Study on Drilling of Carbon Fiber Reinforced Polymer (CFRP) Laminates
,”
Mater. Sci. Forum
,
800–801
, pp.
61
65
.
3.
Smith
,
R. A.
, 2002, “
Composite Defects and Their Detection
,” Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Paris, France, accessed Jan. 27, 2016, http://www.eolss.net/sample-chapters/c05/e6-36-04-03.pdf
4.
Selmi
,
A.
,
2014
, “
Void Effect on Carbon Fiber Epoxy Composites
,”
Second International Conference on Emerging Trends in Engineering and Technology
(
ICETET
), London, May 30–31, pp.
179
183
.http://iieng.org/images/proceedings_pdf/5642E0514613.pdf
5.
Jollivet
,
T.
,
Peyrac
,
C.
, and
Lefebvre
,
F.
,
2013
, “
Damage of Composite Materials
,”
Procedia Eng.
,
66
, pp.
746
758
.
6.
Das
,
S.
,
2001
, “
The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2000/283
.https://digital.library.unt.edu/ark:/67531/metadc723609/
7.
Tarasov
,
I. V.
,
Shevtsov
,
S. N.
,
Evlanov
,
A. V.
, and
Orozaliev
,
E. E.
,
2015
, “
Model-Based Optimal Control of Polymeric Composite Cure in Autoclave System
,”
IFAC-Papers Online
,
48
(
11
), pp.
204
210
.
8.
Krishnaraj
,
V.
,
Prabukarthi
,
A.
,
Ramanathan
,
A.
,
Elanghovan
,
N.
,
Senthil
,
M.
,
Zitoune
,
R.
, and
Davim
,
J. P.
,
2012
, “
Optimization of Machining Parameters at High Speed Drilling of Carbon Fiber Reinforced Plastic (CFRP) Laminates
,”
Compos. Part B: Eng.
,
43
(
4
), pp. 1791–1799.
9.
Mori
,
K.-I.
,
Maeno
,
T.
, and
Nakagawa
,
Y.
,
2014
, “
Dieless Forming of Carbon Fibre Reinforced Plastic Parts Using 3D Printer
,”
Procedia Eng.
,
81
, pp.
1595
1600
.
10.
Papargyris
,
D.
,
Day
,
R. J.
,
Nesbitt
,
A.
, and
Bakavos
,
D.
,
2008
, “
Comparison of the Mechanical and Physical Properties of a Carbon Fiber Epoxy Composite Manufactured by Resin Transfer Molding Using Conventional and Microwave Heating
,”
Compos. Sci. Technol.
,
68
(7–8), pp.
1854
1861
.
11.
Herring
,
M.
,
Mardel
,
J.
, and
Fox
,
B.
,
2010
, “
The Effect of Material Selection and Manufacturing Process on the Surface Finish of Carbon Fibre Composites
,”
J. Mater. Process. Technol.
,
210
(6–7), pp.
926
940
.
12.
Caba
,
S.
, and
Koch
,
M.
,
2015
, “
Analysis of the Resin Transfer Molding (RTM) Process for FRP and Its Process Simulation Fundamentals
,”
AIP Conf. Proc.
,
1664
, p.
060010
.
13.
Bhushan
,
R. K.
,
2013
, “
Multiresponse Optimization of Al Alloy-SiC Composite Machining Parameters for Minimum Tool Wear and Maximum Metal Removal Rate
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021013
.
14.
Mustafa
,
F. F.
,
Kadhym
,
A. H.
, and
Yahya
,
H. H.
,
2015
, “
Tool Geometries Optimization for Friction Stir Welding of AA6061-T6 Aluminum Alloy T-Joint Using Taguchi Method to Improve the Mechanical Behavior
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031018
.
15.
Baker
,
A.
,
Dutton
,
S.
, and
Kelly
,
D.
,
2004
,
Composite Materials for Aircraft Structures
,
2nd, ed.
,
American Institute of Aeronautics and Astronautics
,
New York
.
16.
Saad
,
A.
,
Echchelh
,
A.
,
Hattabi
,
M.
, and
Ganaoui
,
M.
,
2012
, “
Optimization of the Cycle Time in Resin Transfer Molding Process by Numerical Simulation
,”
J. Reinf. Plast. Compos.
,
31
(
20
), pp.
1388
1400
.
17.
Yebi
,
A.
, and
Ayalew
,
B.
,
2015
, “
Optimal Layering Time Control for Stepped-Concurrent Radiative Curing Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011020
.
18.
Jahromi
,
P.
,
Shojaei
,
A.
, and
Pishvaie
,
S.
,
2012
, “
Prediction and Optimization of Cure Cycle of Thick Fiber-Reinforced Composite Parts Using Dynamic Artificial Neural Networks
,”
J. Reinf. Plast. Compos.
,
31
(
18
), pp.
1201
1218
.
19.
Shevtsov
,
S.
,
Tarasov
,
I.
,
Zhilyaev
,
I.
, and
Orozaliev
,
E. E.
,
2015
, “
Compression Molding Cure Cycle Modelling and Optimization for Large Polymeric Composite Parts Processing
,”
Appl. Mech. Mater.
,
772
, pp.
257
262
.
20.
Zhu
,
X.
,
He
,
R.
,
Lu
,
X.
,
Ling
,
X.
,
Zhu
,
L.
, and
Liu
,
B.
,
2015
, “
A Optimization Technique for the Composite Strut Using Genetic Algorithms
,”
Mater. Des.
,
65
, pp.
482
488
.
21.
Fathallah
,
E.
,
Qi
,
H.
,
Tong
,
L.
, and
Helal
,
M.
,
2015
, “
Design Optimization of Lay-Up and Composite Material System to Achieve Minimum Buoyancy Factor for Composite Elliptical Submersible Pressure Hull
,”
Compos. Struct.
,
121
, pp.
16
26
.
22.
Almeida
,
F.
, and
Awruch
,
A.
,
2009
, “
Design Optimization of Composite Laminated Structures Using Genetic Algorithms and Finite Element Analysis
,”
Compos. Struct.
,
88
(
3
), pp.
443
454
.
23.
Pohlak
,
M.
,
Majak
,
J.
,
Karjust
,
K.
, and
Küttner
,
R.
,
2010
, “
Multi-Criteria Optimization of Large Composite Parts
,”
Compos. Struct.
,
92
(
9
), pp.
2146
2152
.
24.
Li
,
N.
,
Li
,
Y.
,
Hang
,
X.
, and
Gao
,
J.
,
2014
, “
Analysis and Optimization of Temperature Distribution in Carbon Fiberreinforced Composite Materials During Microwave Curing Process
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
544
550
.
25.
Kim
,
S.-Y.
,
Shim
,
C. S.
,
Sturtevant
,
C.
,
Kim
,
D.
, and
Song
,
H. C.
,
2014
, “
Mechanical Properties and Production Quality of Hand-Layup and Vacuum Infusion Processed Hybrid Composite Materials for GFRP Marine Structures
,”
Int. J. Navel Archit. Ocean Eng.
,
6
(
3
), pp.
723
736
.
26.
Patel
,
M.
,
Krishna
,
P.
, and
Parappagoudar
,
M. B.
,
2016
, “
Squeeze Casting Process Modeling by a Conventional Statistical Regression Analysis Approach
,”
Appl. Math. Model.
,
40
(15–16), pp.
6869
6888
.
27.
Balakrishna
,
A.
,
Rao
,
D. N.
, and
Rakesh
,
A. S.
,
2013
, “
Characterization and Modeling of Process Parameters on Tensile Strength of Short and Randomly Oriented Borassus Flabellifer (Asian Palmyra) Fiber Reinforced Composite
,”
Composites Part B
,
55
, pp.
479
485
.
28.
Muthuraj
,
R.
,
Misra
,
M.
,
Defersha
,
F.
, and
Mohanty
,
A. K.
,
2016
, “
Influence of Processing Parameters on the Impact Strength of Biocomposites: A Statistical Approach
,”
Composites Part A
,
83
, pp.
120
129
.
You do not currently have access to this content.