Residual stress, characteristic of surface integrity, is a great issue in cutting process for its significant effects on fatigue life and dimension stability of the machined parts. From a practical viewpoint, residual stress is generated in a dynamic tool-part engagement process, instead of a process with nominal cutting loads. This is the challenge that we have to handle, so as to achieve better predictive methods than the previously recorded approaches in literatures which ignore the dynamic effects on residual stress. This paper presents an analytical method for the prediction of residual stress in dynamic orthogonal cutting. A mechanistic model of the dynamic orthogonal cutting is provided, considering the indentation effect of the cutting edge during the wave-on-wave cutting process. Following the calculation of plastic strains by incremental analysis in mechanical loading, analytical solution of the residual stress due to distributed plastic strains in half-plane is obtained based on inclusion theory. Without relaxation procedures, the two-dimensional (2D) distribution of residual stress in dynamic cutting process is predicted for the first time. A delicately designed dynamic orthogonal cutting experiment is realized through numerical control (NC) lathe. The periodic residual stress distribution is predicted using the proposed approach, which is then validated against the X-ray diffraction measurements.

References

References
1.
Brinksmeier
,
E.
,
Cammett
,
J. T.
,
Konig
,
W.
,
Leskovar
,
P.
,
Peters
,
J.
, and
Tonshoff
,
H. K.
,
1982
, “
Residual Stresses—Measurement and Causes in Machining Processes
,”
CIRP Ann.-Manuf. Technol.
,
31
(
2
), pp.
491
510
.
2.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.
3.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M'Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann.-Manuf. Technol.
,
60
(
2
), pp.
603
626
.
4.
Guo
,
Y. B.
,
Li
,
W.
, and
Jawahir
,
I. S.
,
2009
, “
Surface Integrity Characterization and Prediction in Machining of Hardened and Difficult-to-Machine Alloys: A State-of-Art Research Review and Analysis
,”
Mach. Sci. Technol.
,
13
(
4
), pp.
437
470
.
5.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.
6.
Shen
,
N.
,
Ding
,
H.
,
Pu
,
Z.
,
Jawahir
,
I. S.
, and
Jia
,
T.
,
2017
, “
Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: A Physics-Based Analysis With Microstructure Prediction
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061012
.
7.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
695
718
.
8.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1982
, “
Variables Governing Patterns of Mechanical Residual Stress in a Machined Surface
,”
ASME J. Eng. Ind.
,
104
(
3
), pp.
257
264
.
9.
Wu
,
D. W.
, and
Matsumoto
,
Y.
,
1990
, “
The Effect of Hardness on Residual Stresses in Orthogonal Machining of AISI 4340 Steel
,”
ASME J. Eng. Ind.
,
112
(
3
), pp.
245
252
.
10.
Matsumoto
,
Y.
,
Barash
,
M. M.
, and
Liu
,
C. R.
,
1986
, “
Effect of Hardness on the Surface Integrity of AISI 4340 Steel
,”
ASME J. Eng. Ind.
,
108
(
3
), pp.
169
175
.
11.
Merwin
,
J. E.
, and
Johnson
,
K. L.
,
1963
, “
An Analysis of Plastic Deformation in Rolling Contact
,”
Proc. Inst. Mech. Eng.
,
177
(
1
), pp.
676
690
.
12.
Jacobus
,
K.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2000
, “
Machining-Induced Residual Stress: Experimentation and Modeling
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
20
31
.
13.
Liang
,
S. Y.
, and
Su
,
J. C.
,
2007
, “
Residual Stress Modeling in Orthogonal Machining
,”
CIRP Ann.-Manuf. Technol.
,
56
(
1
), pp.
65
68
.
14.
McDowell
,
D. L.
,
1997
, “
An Approximate Algorithm for Elastic-Plastic Two-Dimensional Rolling/Sliding Contact
,”
Wear
,
211
(
2
), pp.
237
246
.
15.
Ji
,
X.
,
Zhang
,
X.
, and
Liang
,
S. Y.
,
2014
, “
Predictive Modeling of Residual Stress in Minimum Quantity Lubrication Machining
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9–12
), pp.
2159
2168
.
16.
Fergani
,
O.
,
Lazoglu
,
I.
,
Mkaddem
,
A.
,
El Mansori
,
M.
, and
Liang
,
S. Y.
,
2014
, “
Analytical Modeling of Residual Stress and the Induced Deflection of a Milled Thin Plate
,”
Int. J. Adv. Manuf. Technol.
,
75
(
1–4
), pp.
455
463
.
17.
Su
,
J.
,
Young
,
K. A.
,
Ma
,
K.
,
Srivatsa
,
S.
,
Morehouse
,
J. B.
, and
Liang
,
S. Y.
,
2013
, “
Modeling of Residual Stresses in Milling
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5–8
), pp.
717
733
.
18.
Lazoglu
,
I.
,
Ulutan
,
D.
,
Alaca
,
B. E.
,
Engin
,
S.
, and
Kaftanoglu
,
B.
,
2008
, “
An Enhanced Analytical Model for Residual Stress Prediction in Machining
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
81
84
.
19.
Ulutan
,
D.
,
Alaca
,
B. E.
, and
Lazoglu
,
I.
,
2007
, “
Analytical Modelling of Residual Stresses in Machining
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
77
87
.
20.
Saif
,
M. T. A.
,
Hui
,
C. Y.
, and
Zehnder
,
A. T.
,
1993
, “
Interface Shear Stresses Induced by Non-Uniform Heating of a Film on a Substrate
,”
Thin Solid Films
,
224
(
2
), pp.
159
167
.
21.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
An Analytical Approach to Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
,
116
(
3
), pp.
577
587
.
22.
Huang
,
X.
,
Zhang
,
X.
, and
Ding
,
H.
,
2015
, “
An Analytical Model of Residual Stress for Flank Milling of Ti-6Al-4V
,”
Procedia CIRP
,
31
, pp.
287
292
.
23.
Zhang
,
D.
,
Zhang
,
X.
,
Xu
,
W.
, and
Ding
,
H.
,
2017
, “
Stress Field Analysis in Orthogonal Cutting Process Using Digital Image Correlation Technique
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031001
.
24.
Nespor
,
D.
,
Denkena
,
B.
,
Grove
,
T.
, and
Böß
,
V.
,
2015
, “
Differences and Similarities Between the Induced Residual Stresses After Ball End Milling and Orthogonal Cutting of Ti-6Al-4V
,”
J. Mater. Process. Technol.
,
226
, pp.
15
24
.
25.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
(
1226
), pp.
376
396
.
26.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
27.
Chiu
,
Y. P.
,
1980
, “
On the Internal Stresses in a Half Plane and a Layer Containing Localized Inelastic Strains or Inclusions
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
313
318
.
28.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
29.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1976
, “
The Mechanical State of the Sublayer of a Surface Generated by Chip-Removal Process—Part 2: Cutting With a Tool With Flank Wear
,”
ASME J. Eng. Ind.
,
98
(
4
), pp.
1202
1208
.
30.
Lin
,
Z.
,
Lin
,
Y.
, and
Liu
,
C. R.
,
1991
, “
Effect of Thermal Load and Mechanical Load on the Residual Stress of a Machined Workpiece
,”
Int. J. Mech. Sci.
,
33
(
4
), pp.
263
278
.
31.
Matsumoto
,
Y.
, and
Da-Chun
,
H.
,
1987
, “
Workpiece Temperature Rise During the Cutting of AISI 4340 Steel
,”
Wear
,
116
(
3
), pp.
309
317
.
32.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
33.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1976
, “
The Mechanical State of the Sublayer of a Surface Generated by Chip-Removal Process—Part 1: Cutting With a Sharp Tool
,”
ASME J. Eng. Ind.
,
98
(
4
), pp.
1192
1199
.
34.
Liu
,
C. R.
, and
Lin
,
Z. C.
,
1985
, “
Effects of Shear Plane Boundary Condition on Stress Loading in Orthogonal Machining
,”
Int. J. Mech. Sci.
,
27
(
5
), pp.
281
290
.
35.
Moufki
,
A.
,
Devillez
,
A.
,
Segreti
,
M.
, and
Dudzinski
,
D.
,
2006
, “
A Semi-Analytical Model of Non-Linear Vibrations in Orthogonal Cutting and Experimental Validation
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
436
449
.
36.
Wu
,
D. W.
,
1989
, “
A New Approach of Formulating the Transfer Function for Dynamic Cutting Processes
,”
ASME J. Eng. Ind.
,
111
(
37
), pp.
37
47
.
37.
Clancy
,
B. E.
, and
Shin
,
Y. C.
,
2002
, “
A Comprehensive Chatter Prediction Model for Face Turning Operation Including Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
1035
1044
.
38.
Chiou
,
R. Y.
, and
Liang
,
S. Y.
,
1998
, “
Chatter Stability of a Slender Cutting Tool in Turning With Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
), pp.
315
327
.
39.
McDowell
,
D. L.
, and
Moyar
,
G. J.
,
1991
, “
Effects of Non-Linear Kinematic Hardening on Plastic Deformation and Residual Stresses in Rolling Line Contact
,”
Wear
,
144
(
1–2
), pp.
19
37
.
40.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
41.
Huang
,
X.
,
Zhang
,
X.
, and
Ding
,
H.
,
2016
, “
A Novel Relaxation-Free Analytical Method for Prediction of Residual Stress Induced by Mechanical Load During Orthogonal Machining
,”
Int. J. Mech. Sci.
,
115–116
, pp.
299
309
.
42.
Ahmadi
,
K.
, and
Ismail
,
F.
,
2011
, “
Analytical Stability Lobes Including Nonlinear Process Damping Effect on Machining Chatter
,”
Int. J. Mach. Tools Manuf.
,
51
(
4
), pp.
296
308
.
43.
Wu
,
D. W.
,
1988
, “
Application of a Comprehensive Dynamic Cutting Force Model to Orthogonal Wave-Generating Processes
,”
Int. J. Mech. Sci.
,
30
(
8
), pp.
581
600
.
44.
Tounsi
,
N.
,
Vincenti
,
J.
,
Otho
,
A.
, and
Elbestawi
,
M. A.
,
2002
, “
From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach. Tools Manuf.
,
42
(
12
), pp.
1373
1383
.
45.
Outeiro
,
J. C.
,
Umbrello
,
D.
, and
M'Saoubi
,
R.
,
2006
, “
Experimental and Numerical Modelling of the Residual Stresses Induced in Orthogonal Cutting of AISI 316L Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1786
1794
.
46.
Wiercigroch
,
M.
, and
Budak
,
E.
,
2001
, “
Sources of Nonlinearities, Chatter Generation and Suppression in Metal Cutting
,”
Philos. Trans. R. Soc. London A
,
359
(
1781
), pp.
663
693
.
47.
Davies
,
M. A.
, and
Burns
,
T. J.
,
2001
, “
Thermomechanical Oscillations in Material Flow During High-Speed Machining
,”
Philos. Trans. R. Soc. London A
,
359
(
1781
), pp.
821
846
.
You do not currently have access to this content.