Subsurface deformation of the cutting process has attracted a great deal of attention due to its tight relationship with subsurface hardening, microstructure alteration, grain refinement, and white layer formation. To predict the subsurface deformation of the machined components, an analytical model is proposed in this paper. The mechanical and thermal loads exerted on the workpiece by the primary and tertiary shear zones are predicted by a combination of Oxley's predictive model and Fang's slip line field. The stress field and temperature field are calculated based on contact mechanics and the moving heat source theory, respectively. However, the elastic–plastic regime induced by the material yielding hinders the direct derivation of subsurface plastic deformation from the stress field and the work material constitutive model. To tackle this problem, a blending function of the increment of elastic strain is developed to derive the plastic strain. In addition, a sophisticated material constitutive model considering strain hardening, strain rate sensitivity, and thermal softening effects of work material is incorporated into this analytical model. To validate this model, finite element simulations of the subsurface deformation during orthogonal cutting of AISI 52100 steel are conducted. Experimental verification of the subsurface deformation is carried out through a novel subsurface deformation measurement technique based on digital image correlation (DIC) technique. To demonstrate applications of the subsurface deformation prediction, the subsurface microhardness of the machined component is experimentally tested and compared against the predicted values based on the proposed method.

References

References
1.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
2.
Guo
,
Y.
,
M'Saoubi
,
R.
, and
Chandrasekar
,
S.
,
2011
, “
Control of Deformation Levels on Machined Surfaces
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
137
140
.
3.
Ramesh
,
A.
,
Melkote
,
S.
,
Allard
,
L.
,
Riester
,
L.
, and
Watkins
,
T.
,
2005
, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng., A
,
390
(
1
), pp.
88
97
.
4.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.
5.
Sharman
,
A.
,
Hughes
,
J.
, and
Ridgway
,
K.
,
2006
, “
An Analysis of the Residual Stresses Generated in Inconel 718™ When Turning
,”
J. Mater. Process. Technol.
,
173
(
3
), pp.
359
367
.
6.
Olsson
,
M.
,
Bushlya
,
V.
,
Zhou
,
J.
, and
Ståhl
,
J.-E.
,
2016
, “
Effect of Feed on Sub-Surface Deformation and Yield Strength of Oxygen-Free Pitch Copper in Machining
,”
Procedia CIRP
,
45
, pp.
103
106
.
7.
Bailey
,
J.
, and
Jeelani
,
S.
,
1976
, “
Determination of Subsurface Plastic Strain in Machining Using an Embossed Grid
,”
Wear
,
36
(
2
), pp.
199
206
.
8.
Ghadbeigi
,
H.
,
Bradbury
,
S.
,
Pinna
,
C.
, and
Yates
,
J.
,
2008
, “
Determination of Micro-Scale Plastic Strain Caused by Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
,
48
(
2
), pp.
228
235
.
9.
Sadat
,
A.
, and
Reddy
,
M.
,
1992
, “
Surface Integrity of Inconel-718 Nickel-Base Superalloy Using Controlled and Natural Contact Length Tools—Part I: Lubricated
,”
Exp. Mech.
,
32
(
3
), pp.
282
288
.
10.
Outeiro
,
J.
,
Campocasso
,
S.
,
Denguir
,
L.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Poulachon
,
G.
,
2015
, “
Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining
,”
CIRP Ann.-Manuf. Technol.
,
64
(
1
), pp.
53
56
.
11.
Zhang
,
D.
,
Zhang
,
X.
, and
Ding
,
H.
,
2016
, “
A Study on the Orthogonal Cutting Mechanism Based on Experimental Determined Displacement and Temperature Fields
,”
Procedia CIRP
,
46
, pp.
35
38
.
12.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Xu
,
W.-J.
, and
Ding
,
H.
,
2016
, “
Stress Field Analysis in Orthogonal Cutting Process Using Digital Image Correlation Technique
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031001
.
13.
Ranganath
,
S.
,
Guo
,
C.
, and
Hegde
,
P.
,
2009
, “
A Finite Element Modeling Approach to Predicting White Layer Formation in Nickel Superalloys
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
77
80
.
14.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081001
.
15.
Agmell
,
M.
,
Ahadi
,
A.
, and
Ståhl
,
J. E.
,
2011
, “
A Numerical and Experimental Investigation of the Deformation Zones and the Corresponding Cutting Forces in Orthogonal Cutting
,”
Advanced Materials Research
,
Trans Tech Publications
, Zurich, Switzerland, pp.
152
161
.
16.
Chen
,
Y.
,
Bunget
,
C.
,
Mears
,
L.
, and
Kurfess
,
T. R.
,
2015
, “
Investigations in Subsurface Damage When Machining γ′-Strengthened Nickel-Based Superalloy
,”
Proc. Inst. Mech. Eng., Part B
,
230
(
7
), pp.
1221
1233
.
17.
Shen
,
N.
,
Ding
,
H.
,
Pu
,
Z.
,
Jawahir
,
I. S.
, and
Jia
,
T.
,
2017
, “
Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: A Physics-Based Analysis With Microstructure Prediction
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061012
.
18.
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044504
.
19.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
20.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.
21.
Oxley
,
P. L. B.
, and
Young
,
H.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Publisher
, New York, pp.
136
182
.
22.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
.
23.
Lalwani
,
D.
,
Mehta
,
N.
, and
Jain
,
P.
,
2009
, “
Extension of Oxley's Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12
), pp.
5305
5312
.
24.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
25.
Islam
,
C.
,
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2015
, “
A Three-Dimensional Transient Thermal Model for Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021003
.
26.
Jaeger
,
J.
,
1942
, “
Moving Sources of Heat and Temperature at Sliding Contacts
,” J. and Proc. Roy. Soc. New South Wales,
76
, pp. 203–224.
27.
Shen
,
S.
, and
Atluri
,
S.
,
2006
, “
An Analytical Model for Shot-Peening Induced Residual Stresses
,”
Comput., Mater. Continua
,
4
(
2
), pp.
75
85
.
28.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
402
414
.
29.
Zhang
,
D.
,
Zhang
,
X.
, and
Ding
,
H.
,
2016
, “
On the Difference of Subsurface Deformation Obtained by Image Correlation Technique From That of Plane Strain Deformation in Orthogonal Metal Cutting
,”
ASME
Paper No. IMECE2016-65993.
30.
Blaber
,
J.
,
Adair
,
B.
, and
Antoniou
,
A.
,
2015
, “
Ncorr: Open-Source 2D Digital Image Correlation Matlab Software
,”
Exp. Mech.
,
55
(
6
), pp.
1105
1122
.
31.
Pawade
,
R.
,
Joshi
,
S. S.
, and
Brahmankar
,
P.
,
2008
, “
Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-Speed Turned Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
15
28
.
You do not currently have access to this content.