Tadeusz Rut (TR) forging is a widely used forging method to create heavy, solid crankshafts for marine or power-generating engines. The preform of a TR forging is forged into a crank throw by simultaneously applying both a vertical and a horizontal deformation. It is necessary to optimize the preform design, since a conventional analytical design for the preform gives various choices for the geometric variables. The purpose of the current study is to optimize the preform design in TR forging for heavy crankshafts in order to improve the dimensional accuracy of a forged shape using a limited material volume. A finite element (FE) model for TR forging was developed and validated by comparing with experimental results. Parametric FE analyses were used to evaluate the effects of the geometric variables of the preform on the final dimensions of the forged product. The geometric variables of the preform were optimized by a response-surface method (RSM) to obtain the results of parametric FE analyses. The volume allocation between the pin and the web of the preform is the dominant factor that affects the desirability of the final forged shape. A multi-objective optimization is employed to consider the mutually exclusive changes of local machining allowances of the final forged product. Optimization using a response-surface method is a useful tool to reach the large and uniform machining allowances that are required for the preform necessary for a TR forging.

References

References
1.
IACS
,
2012
, “
Calculation of Crankshafts for I.C. Engines-Calculation of Fatigue Strength
,” International Association of Classification Societies, London, Standard No.
IACS UR M53.6
.http://rules.dnvgl.com/docs/pdf/gl/maritimerules/gl_vi-4-2_e.pdf
2.
Rut
,
T.
,
1968
,
Multi-Connector Equipment for Forging Crankshafts and Upsetting Bar Stock by the TR Method
,
Pergamon Press
,
Elmsford, NY
.
3.
Rut
,
T.
,
1988
, “
Forging of Long-Stroke Crankshafts by the TR-Method
,”
Arch. Metall.
,
133
(
1
), pp.
17
33
.
4.
Park
,
S. H.
,
Yoon
,
S. M.
,
Synn
,
S. Y.
,
Park
,
L. W.
,
Park
,
J. K.
,
Lee
,
E. G.
, and
Kim
,
T. D.
,
1999
, “
A Study of Forging Equipment for One Body Crankshaft of Medium Sized Marine Engine
,”
Trans. Mater. Process.
,
8
(
3
), pp.
237
244
.
5.
Kakimoto
,
H.
,
Choda
,
T.
,
Takahashi
,
Y.
,
Fujita
,
K.
,
Takahara
,
H.
, and
Mori
,
H.
,
2006
, “
Process Design of RR Forging Using Numerical Simulation
,”
J. Jpn. Soc. Technol. Plast.
,
47
(
548
), pp.
829
834
.
6.
Park
,
J. H.
,
Li
,
Q. S.
,
Lee
,
M. C.
,
Cho
,
B. J.
, and
Joun
,
M. S.
,
2009
, “
Finite Element Simulation of Hot Forging of Special Purpose Large Crankshafts
,”
ISMAI-03
, Tokyo, Japan, Feb. 23–25, pp.
184
187
.http://msjoun.gnu.ac.kr/pub/paper/2009/2009-F.pdf
7.
Sztangret
,
L.
,
Milenin
,
A.
,
Sztangret
,
M.
,
Walczyk
,
W.
,
Pietrzyk
,
M.
, and
Kusiak
,
J.
,
2011
, “
Computer Aided Design of the Best TR Forging Technology for Crank Shafts
,”
Comput. Methods Mater. Sci.
,
11
(
2
), pp.
237
242
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ8-0013-0003
8.
Walczyk
,
W.
,
Milenin
,
A.
, and
Pietrzyk
,
M.
,
2011
, “
Computer Aided Design of New Forging Technology for Crank Shaft
,”
Steel Res. Int.
,
82
(
3
), pp.
187
194
.
9.
Zhang
,
C.
,
Cui
,
Z.
, and
Sui
,
D.
,
2013
, “
Numerical Simulation of Upset-Bending Forging for Heavy Crankshaft
,”
Adv. Mater. Res.
,
773
, pp.
267
271
.
10.
Jia
,
Z.
,
Xu
,
B.
,
Sun
,
M.
,
Li
,
D.
,
Deng
,
J.
, and
He
,
M.
,
2013
, “
Study on the Metal Flow of Large Marine Full-Fiber Crankshaft Processed by TR Bending-Upsetting Method
,”
AIP Conf. Proc.
,
1532
, pp.
812
818
.
11.
Zhang
,
L.
,
Zhang
,
Z.
,
Li
,
S.
,
Cui
,
H.
, and
Cui
,
H.
,
2006
, “
FE Simulation and Bending Speed Optimization of N-TR Continuous Grain Flow Forging Process for Solid Heavy Crankshaft
,”
Obrób. Plast. Met.
,
17
(
2
), pp.
3
13
.http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPB2-0017-0009/c/httpwww_inop_poznan_plwydawnictwoobrobka-plastyczna-metalixvii-2-1-nowy.pdf
12.
Shirgaokar
,
M.
,
Epp
,
G.
,
Nystrom
,
J.
, and
Taylor
,
B.
,
2011
, “
Continuous Grain Flow (CGF) Forging of Crankshafts on a Multi-Directional Press
,”
IFM 2011
, Pittsburgh, PA, Oct. 18, pp.
313
319
.
13.
Castro
,
C. F.
,
Antonio
,
C. A. C.
, and
Sousa
,
L. C.
,
2004
, “
Optimization of Shape and Process Parameters in Metal Forging Using Genetic Algorithms
,”
J. Mater. Process. Technol.
,
146
(
3
), pp.
356
364
.
14.
Thiyagarajan
,
N.
, and
Grandhi
,
R. V.
,
2005
, “
Multi-Level Design Process for 3-D Preform Shape Optimization in Metal Forming
,”
J. Mater. Process. Technol.
,
170
(1–2), pp.
421
429
.
15.
Poursina
,
M.
,
Parvizian
,
J.
, and
Antonio
,
C. A. C.
,
2006
, “
Optimum Pre-Form Dies in Two-Stage Forging
,”
J. Mater. Process. Technol.
,
174
(1–3), pp.
325
333
.
16.
Tumer
,
H.
, and
Sonmez
,
F. O.
,
2009
, “
Optimum Shape Design of Die and Preform for Improved Hardness Distribution in Cold Forged Parts
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1538
1549
.
17.
Guan
,
Y.
,
Bai
,
X.
,
Liu
,
M.
,
Song
,
L.
, and
Zhao
,
G.
,
2014
, “
3D Preform Design in Forging Process Based on Quasi-Equipotential Field and Response Surface Method
,”
Procedia Eng.
,
81
, pp.
468
473
.
18.
Yanhui
,
Y.
,
Dong
,
L.
,
Ziyan
,
H.
, and
Zijian
,
L.
,
2010
, “
Optimization of Preform Shapes by RSM and FEM to Improve Deformation Homogeneity in Aerospace Forgings
,”
Chin. J. Aeronaut.
,
23
(
2
), pp.
260
267
.
19.
Park
,
H. S.
, and
Dang
,
X. P.
,
2015
, “
Multiobjective Optimization of the Heating Process for Forging Automotive Crankshaft
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031011
.
20.
Sun
,
G.
,
Li
,
G.
,
Gong
,
Z.
,
Cui
,
X.
,
Yang
,
X.
, and
Li
,
Q.
,
2010
, “
Multiobjective Robust Optimization Method for Drawbead Design in Sheet Metal Forming
,”
Mater. Des.
,
31
(
4
), pp.
1917
1929
.
21.
Abbas
,
A. T.
,
Aly
,
M.
, and
Hamza
,
K.
,
2016
, “
Multiobjective Optimization Under Uncertainty in Advanced Abrasive Machining Processes Via a Fuzzy-Evolutionary Approach
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071003
.
22.
Sarmiento
,
G. S.
,
Bugna
,
J. F.
,
Canale
,
L. C. F.
,
Riofano
,
R. M. M.
,
Mesquita
,
R. A.
,
Totten
,
G. E.
, and
Canale
,
A. C.
,
2007
, “
Modeling Quenching Performance by the Kuyucak Method
,”
Mater. Sci. Eng.
,
459
(1–2), pp.
383
389
.
23.
Shang
,
J. S.
,
Li
,
S.
, and
Tadikamalla
,
P.
,
2004
, “
Operational Design of a Supply Chain System Using the Taguchi Method, Response Surface Methodology, Simulation, and Optimization
,”
Int. J. Prod. Res.
,
42
(
18
), pp.
3823
3849
.
24.
Loong
,
N. C.
,
Barsi
,
M.
,
Fang
,
L. F.
,
Masoumi
,
H. R. F.
,
Trupathy
,
M.
,
Karijiban
,
R. A.
, and
Abdul-Malek
,
E.
,
2014
, “
Comparison of Box-Behnken and Central Composite Design in Optimization of Fullerene Loaded Palm-Based Nano-Emulsions for Cosmeceutical Application
,”
Ind. Crops Prod.
,
59
, pp.
309
317
.
You do not currently have access to this content.