The Zamak 2 alloy has the best mechanical properties of the Zamak alloys with respect to the tensile strength, creep resistance, and hardness. Zamak 2 is a commercial material widely used for the manufacturing of mechanical components. The presence of Cu in this alloy (3 wt. %) improves the mechanical properties through the formation of E (CuZn4) precipitates. The powder metallurgy (P/M) has an important direct advantage in the fabricated parts with respect to the finished dimensions or near net shaping due to the additional phase stabilization without heat treatment. However, there are few studies into the production of this zinc alloy via mechanical alloying and the effect of the consolidation technique in terms of the material properties; these research deficiencies led to the development of this work. The powder was analyzed during milling until achieving a steady-state, which occurred after 30 h of milling in a planetary ball mill at 400 rpm. The high-energy milling produces a Zamak 2 alloy powder with a T′ stable phase and with a greater melting point. When consolidated using hot pressing, the hardness increases compared to sintering and casting alloy.

References

References
1.
Schwab
,
U.
,
2013
, “
O uso em Automóveis de Componentes de Zinco Fundidos sob Pressão
,” Fundição e Serviços, Aranda, São Paulo, Brazil, accessed Apr. 11, 2016, http://www.frechbrasil.com.br/F%C3%B6hl%20pdf.pdf
2.
International Zinc Association
,
2006
, “
Engineering in Zinc, Today's Answer
,” International Zinc Association, Brussels, Belgium, accessed Apr. 18, 2016, http://www.zinc.org/?s=Engineering+in+Zinc%2C+Today%E2%80%99s+Answer
3.
ASM International Committee
,
1990
, “
Properties and Selection: Nonferrous Alloys and Special Purpose Materials
,”
ASM Metals Handbook
,
10th ed.
, Vol. 2,
ASM International Committee
,
Materials Park, OH
, Vol.
2
, p.
1300
.
4.
Li
,
B. J.
, and
Chao
,
C. G.
,
1999
, “
Aging Kinetics of Heat-Treated Zn–4Al–3Cu Alloy
,”
Scr. Mater.
,
41
(
2
), pp.
143
147
.
5.
da Costa
,
E. M.
,
da Costa
,
C. E.
,
Vecchia
,
F. D.
,
Rick
,
C.
,
Scherer
,
M.
,
dos Santos
,
C. A.
, and
Dedavid
,
B. A.
,
2009
, “
Study of the Influence of Copper and Magnesium Additions on the Microstructure Formation of Zn–Al Hypoeutectic Alloys
,”
J. Alloys Compd.
,
488
(
1
), pp.
89
99
.
6.
Martinez-Flores
,
E.
, and
Torres-Villaseñor
,
G.
,
1997
, “
Compression Ductility of Zn–21 Al–2Cu Prepared by Powder Metallurgy Techniques
,”
Mater. Des.
,
18
(
3
), pp.
127
130
.
7.
Azzi
,
A.
, and
Haghighi
,
G. G.
,
2015
, “
Fabrication of ZAMAK 2 Alloys by Powder Metallurgy Process
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9–12
), pp.
2059
2065
.
8.
Xun
,
Y.
,
Rodriguez
,
R.
,
Lavernia
,
E. J.
, and
Mohamed
,
F. A.
,
2005
, “
Processing and Microstructural Evolution of Powder Metallurgy Zn-22 Pct Al Eutectoid Alloy Containing Nanoscale Dispersion Particles
,”
Metall. Mater. Trans. A
,
36
(
10
), pp.
2849
2859
.
9.
Aragón
,
J. A.
,
2008
, “
Formación de la Aleación Zn–21.6%Al–2.0%Cu por Pulvimetalurgia: Efecto del Lubricante en las Briquetas
,”
Inf. Tecnol.
,
19
(6), pp.
3
8
.
10.
Hirata
,
V. M. L.
,
Muñoz
,
M. S.
,
Hernandez
,
J. C. R.
, and
Zhu
,
Y. H.
,
1998
, “
Milling Characteristics of Extruded Eutectoid Zn–Al Alloy
,”
Mater. Sci. Eng.
,
247
(
1–2
), pp.
8
14
.
11.
Lee
,
K. H.
,
Lee
,
J. M.
,
Hwang
,
D. W.
, and
Kim
,
B. M.
,
2013
, “
Effect of Lubrication and Greencompact Shape on Mechanical Properties of Mechanically Alloyed Zn–22wt%Al Powders During Hot Extrusion of Spur Gears
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
849
856
.
12.
Beddoes
,
J.
, and
Bibby
,
M. J.
,
1999
, “
Powder Metallurgy
,”
Principles of Metal Manufacturing Processes
,
Wiley
,
Hoboken, NJ
, pp.
173
189
.
13.
ASM International Committee
,
1998
, “
Powder Metal Technologies and Applications
,”
ASM Handbook
, Vol.
7
,
ASM International Committee
,
Materials Park, OH
, p.
2762
.
14.
Lee
,
K. H.
,
Lee
,
J. M.
,
Park
,
J. H.
, and
Kim
,
B. M.
,
2012
, “
Fabrication of Miniature Helical Gears by Powder Extrusion Using Gas Atomized Zn–22Al Powder
,”
Trans. Nonferrous Met. Soc. China
,
22
(
6
), pp.
1313
1321
.
15.
Lee
,
K. H.
,
Lee
,
J. M.
,
Kim
,
D. H.
, and
Kim
,
B. M.
,
2013
, “
Fabrication of Micro Spur Gears by Step Powder Extrusion of Zn–22wt%Al Powder Without Sintering Process
,”
J. Mech. Sci. Technol.
,
27
(
1
), pp.
163
168
.
16.
Mohamed
,
F. A.
, and
Xun
,
Y.
,
2003
, “
On the Minimum Grain Size Produced by Milling Zn–22%Al
,”
Mater. Sci. Eng. A
,
358
(
1–2
), pp.
178
185
.
17.
Zhu
,
Y.
, and
Lee
,
W.
,
2000
, “
Tensile Deformation and Phase Transformation of Furnace Cooled Zn–Al Based Alloy
,”
Mater. Sci. Eng. A
,
293
(
1–2
), pp.
95
101
.
18.
Murphy
,
S.
,
1980
, “
Solid State Reactions in the Low-Copper Part of the Aluminium Copper–Zinc System
,”
Z. Metallkd.
,
71
(
2
), pp.
96
102
.
19.
Dorantes-Rosales
,
H. J.
,
Lopez-Hirata
,
V. M.
,
Cruz-Rivera
,
J.
, and
Saucedo-Muñoz
,
M. L.
,
2005
, “
Coarsening of τ′ Precipitates During Aging in a Zn–22 wt.% Al–2 wt.% Cu Alloy
,”
Mater. Lett.
,
59
(
16
), pp.
2075
2078
.
20.
Suryanarayana
,
C.
,
2001
, “
Mechanical Alloying and Milling
,”
Prog. Mater. Sci.
,
46
(
1–2
), pp.
1
184
.
21.
Li
,
B. J.
, and
Chao
,
C. G.
,
1999
, “
Phase Transformation of Zn–4Al–3Cu Alloy During Heat Treatment
,”
Metall. Mater. Trans. A
,
30
(
4
), pp.
917
923
.
You do not currently have access to this content.