Springback is an important issue for the application of advanced high-strength steels (AHSS) in the automobile industry. Various studies have shown that it is an effective way to predict springback by using path-dependent material models. The accuracy of these material models greatly depends on the experimental test methods as well as material parameters calibrated from these tests. The present cyclic sheet metal test methods, like uniaxial tension–compression test (TCT) and cyclic shear test (CST), are nonstandard and various. The material parameters calibrated from these tests vary greatly from one to another, which makes the usage of material parameters for the accurate prediction of springback more sophisticated even when the advanced material model is available in commercial software. The focus of this work is to compare the springback prediction accuracy by using the material parameters calibrated from tension–compression test or cyclic shear test, and to further clarify the usage of those material parameters in application. These two types of nonstandard cyclic tests are successfully carried out on a same test platform with different specimen geometries. One-element models with corresponding tension–compression or cyclic shear boundary conditions are built, respectively, to calibrate the parameters of the modified Yoshida–Uemori (YU) model for these two different tests. U-bending process is performed for springback prediction comparison. The results show, for dual phase steel (DP780), the work hardening stagnation is not evident by tension–compression tests at all the prestrain levels or by cyclic shear test at small prestrain γ = 0.20 but is significantly apparent by cyclic shear tests at large prestrain γ = 0.38, 0.52, 0.68, which seems to be a prestrain-dependent phenomenon. The material parameters calibrated from different types of cyclic sheet metal tests can vary greatly, but it gives slight differences of springback prediction for U-bending by utilizing either tension–compression test or cyclic shear test.

References

References
1.
Fallahiarezoodar
,
A.
,
Peker
,
R.
, and
Altan
,
T.
,
2016
, “
Temperature Increase in Forming of Advanced High-Strength Steels Effect of Ram Speed Using a Servodrive Press
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094503
.
2.
Tong
,
W.
,
2016
, “
On the Parameter Identification of Polynomial Anisotropic Yield Functions
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071002
.
3.
Chen
,
P.
,
Koç
,
M.
, and
Wenner
,
M. L.
,
2008
, “
Experimental Investigation of Springback Variation in Forming of High Strength Steels
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041006
.
4.
Lee
,
M. G.
,
Kim
,
C.
,
Pavlina
,
E. J.
, and
Barlat
,
F.
,
2011
, “
Advances in Sheet Forming-Materials Modeling, Numerical Simulation, and Press Technologies
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061001
.
5.
Eggertsen
,
P. A.
,
Mattiasson
,
K.
, and
Hertzman
,
J.
,
2011
, “
A Phenomenological Model for the Hysteresis Behavior of Metal Sheets Subjected to Unloading/Reloading Cycles
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061021
.
6.
Prager
,
W.
,
1956
, “
A New Method of Analyzing Stresses and Strains in WorkHardening Plastic Solids
,”
J. Appl. Mech.
,
23
, pp.
493
496
.http://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1260343
7.
Ziegler
,
H.
,
1959
, “
A Modification of Prager's Hardening Rule
,”
Q. Appl. Mech.
,
17
(
1
), pp.
55
65
.http://www.ams.org/mathscinet-getitem?mr=104405
9.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.
10.
Yoshida
,
F.
, and
Uemori
,
T.
,
2002
, “
A Model of Large-Strain Cyclic Plasticity Describing the Bauschinger Effect and Workhardening Stagnation
,”
Int. J. Plast.
,
18
(
5–6
), pp.
661
686
.
11.
Shi
,
M. F.
,
Zhu
,
X. H.
,
Xia
,
C.
, and
Stoughton
,
T.
,
2008
, “
Determination of Nonlinear Isotropic/Kinematic Hardening Constitutive Parameters for AHSS Using Tension and Compression Tests
,”
NUMISHEET Conference
, Interlaken, Switzerland, Sept. 1–5, pp.
264
270
.http://www.citeulike.org/user/matbert71/article/10859461
12.
He
,
J.
,
Xia
,
Z. C.
,
Zhu
,
X. H.
,
Zeng
,
D.
, and
Li
,
S. H.
,
2013
, “
Sheet Metal Forming Limits Under Stretch-Bending With Anisotropic Hardening
,”
Int. J. Mech. Sci.
,
75
, pp.
244
256
.
13.
He
,
J.
,
Xia
,
Z. C.
,
Li
,
S. H.
, and
Zeng
,
D.
,
2013
, “
M-K Analysis of Forming Limit Diagram Under Stretch-Bending
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041017
.
14.
He
,
J.
,
Xia
,
Z. C.
,
Zeng
,
D.
, and
Li
,
S. H.
,
2013
, “
Forming Limits of a Sheet Metal After Continuous-Bending-Under-Tension Loading
,”
ASME J. Eng. Mater. Technol.
,
135
(
3
), p.
031009
.
15.
He
,
J.
,
Zeng
,
D.
,
Zhu
,
X. H.
,
Xia
,
Z. C.
, and
Li
,
S. H.
,
2014
, “
Effect of Nonlinear Strain Paths on Forming Limits Under Isotropic and Anisotropic Hardening
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
402
415
.
16.
Li
,
S. H.
,
He
,
J.
,
Zhao
,
Y. X.
,
Wang
,
S. S.
,
Dong
,
L.
, and
Cui
,
R. G.
,
2015
, “
Theoretical Failure Investigation for Sheet Metals Under Hybrid Stretch-Bending Loadings
,”
Int. J. Mech. Sci.
,
104
, pp.
75
90
.
17.
Yoshida
,
F.
,
Uemori
,
T.
, and
Fujiwara
,
K.
,
2002
, “
Elastic-Plastic Behavior of Steel Sheets Under In-Plane Cyclic Tension–Compression at Large Strain
,”
Int. J. Plast.
,
18
(
5
), pp.
633
659
.
18.
Boger
,
R. K.
,
Wagoner
,
R. H.
,
Barlat
,
F.
,
Lee
,
M. G.
, and
Chung
,
K.
,
2005
, “
Continuous, Large Strain, Tension/Compression Testing of Sheet Material
,”
Int. J. Plast.
,
21
(
12
), pp.
2319
2343
.
19.
Cao
,
J.
,
Lee
,
W.
,
Cheng
,
H. S.
,
Seniw
,
M.
,
Wang
,
H. P.
, and
Chung
,
K.
,
2009
, “
Experimental and Numerical Investigation of Combined Isotropic-Kinematic Hardening Behavior of Sheet Metals
,”
Int. J. Plast.
,
25
(
5
), pp.
942
972
.
20.
Magargee
,
J.
,
Cao
,
J.
,
Zhou
,
R.
,
McHugh
,
M.
,
Brink
,
D.
, and
Morestin
,
F.
,
2011
, “
Characterization of Tensile and Compressive Behavior of Microscale Sheet Metals Using a Transparent Microwedge Device
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
064501
.
21.
Beese
,
A. M.
, and
Mohr
,
D.
,
2011
, “
Effect of Stress Triaxiality and Lode Angle on the Kinetics of Strain-Induced Austenite-To-Martensite Transformation
,”
Acta Mater.
,
59
(
7
), pp.
2589
2600
.
22.
Knoerr
,
L.
,
Sever
,
N.
,
McKune
,
P.
, and
Faath
,
T.
,
2013
, “
Cyclic Tension Compression Testing of AHSS Flat Specimens With Digital Image Correlation System
,”
AIP Conf. Proc.
,
1567
(
1
), pp.
654
658
.
23.
Joo
,
G.
,
Huh
,
H.
, and
Choi
,
M. K.
,
2016
, “
Tension/Compression Hardening Behaviors of Auto-Body Steel Sheets at Intermediate Strain Rates
,”
Int. J. Mech. Sci.
,
108–109
, pp.
174
187
.
24.
Miyauchi
,
K.
,
1984
, “
A Proposal for a Planar Simple Shear Test in Sheet Metals
,”
Sci. Pap. Inst. Phys. Chem. Res.
,
78
(
3
), pp.
27
40
.
25.
G'Sell
,
C.
,
Boni
,
S.
, and
Shrivastava
,
S.
,
1983
, “
Application of the Plane Simple Shear Test for Determination of the Plastic Behaviour of Solid Polymers at Large Strains
,”
J. Mater. Sci.
,
18
(
3
), pp.
903
918
.
26.
Rauch
,
E. F.
, and
G'Sell
,
C.
,
1989
, “
Flow Localization Induced by a Change in Strain Path in Mild Steel
,”
Mater. Sci. Eng. A
,
111
, pp.
71
80
.
27.
Bouvier
,
S.
,
Haddadi
,
H.
,
Levée
,
P.
, and
Teodosiu
,
C.
,
2006
, “
Simple Shear Tests: Experimental Techniques and Characterization of the Plastic Anisotropy of Rolled Sheets at Large Strains
,”
J. Mater. Process. Technol.
,
172
(
1
), pp.
96
103
.
28.
Thuillier
,
S.
, and
Manach
,
P. Y.
,
2009
, “
Comparison of the Work-Hardening of Metallic Sheets Using Tensile and Shear Strain Paths
,”
Int. J. Plast.
,
25
(
5
), pp.
733
751
.
29.
Lee
,
J. W.
,
Lee
,
M. G.
, and
Barlat
,
F.
,
2012
, “
Finite Element Modeling Using Homogeneous Anisotropic Hardening and Application to Spring-Back Prediction
,”
Int. J. Plast.
,
29
, pp.
13
41
.
30.
Zang
,
S. L.
,
Sun
,
L.
, and
Niu
,
C.
,
2013
, “
Measurements of Bauschinger Effect and Transient Behavior of a Quenched and Partitioned Advanced High Strength Steel
,”
Mater. Sci. Eng. A
,
586
, pp.
31
37
.
31.
Yin
,
Q.
,
Soyarslan
,
C.
,
Güner
,
A.
,
Brosius
,
A.
, and
Tekkaya
,
A. E.
,
2012
, “
A Cyclic Twin Bridge Shear Test for the Identification of Kinematic Hardening Parameters
,”
Int. J. Mech. Sci.
,
59
(
1
), pp.
31
43
.
32.
Yin
,
Q.
,
Tekkaya
,
A. E.
, and
Traphöner
,
H.
,
2015
, “
Determining Cyclic Flow Curves Using the In-Plane Torsion Test
,”
CIRP Ann.-Manuf. Technol.
,
64
(
1
), pp.
261
264
.
33.
Merklein
,
M.
,
Johannes
,
M.
,
Biasutti
,
M.
, and
Lechner
,
M.
,
2013
, “
Numerical Optimisation of a Shear Specimen Geometry According to ASTM
,”
Key Eng. Mater.
,
549
, pp.
317
324
.
34.
Merklein
,
M.
, and
Biasutti
,
M.
,
2011
, “
Forward and Reverse Simple Shear Test Experiments for Material Modeling in Forming Simulations
,”
10th International Conference on Technology of Plasticity
(ICTP), Aachen, Germany, Sept. 25–30, pp.
702
707
.
35.
Yin
,
Q.
,
Zillmann
,
B.
,
Suttner
,
S.
,
Gerstein
,
G.
,
Biasutti
,
M.
,
Tekkaya
,
A. E.
, and
Brosius
,
A.
,
2014
, “
An Experimental and Numerical Investigation of Different Shear Test Configurations for Sheet Metal Characterization
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1066
1074
.
36.
Yoshida
,
F.
,
Urabe
,
M.
, and
Toropov
,
V. V.
,
1998
, “
Identification of Material Parameters in Constitutive Model for Sheet Metals From Cyclic Bending Tests
,”
Int. J. Mech. Sci.
,
40
(
2
), pp.
237
249
.
37.
Geng
,
L.
,
Shen
,
Y.
, and
Wagoner
,
R. H.
,
2002
, “
Anisotropic Hardening Equations Derived From Reverse-Bend Testing
,”
Int. J. Plast.
,
18
(
5
), pp.
743
767
.
38.
Omerspahic
,
E.
,
Mattiasson
,
K.
, and
Enquist
,
B.
,
2006
, “
Identification of Material Hardening Parameters by Three-Point Bending of Metal Sheets
,”
Int. J. Mech. Sci.
,
48
(
12
), pp.
1525
1532
.
39.
Zang
,
S. L.
,
Lee
,
M. G.
,
Sun
,
L.
, and
Kim
,
J. H.
,
2014
, “
Measurement of the Bauschinger Behavior of Sheet Metals by Three-Point Bending Springback Test With Pre-Strained Strips
,”
Int. J. Plast.
,
59
, pp.
84
107
.
40.
Carbonnière
,
J.
,
Thuillier
,
S.
,
Sabourin
,
F.
,
Brunet
,
M.
, and
Manach
,
P. Y.
,
2009
, “
Comparison of the Work Hardening of Metallic Sheets in Bending-Unbending and Simple Shear
,”
Int. J. Mech. Sci.
,
51
(
2
), pp.
122
130
.
41.
Broggiato
,
G. B.
,
Campana
,
F.
,
Cortese
,
L.
, and
Mancini
,
E.
,
2012
, “
Comparison Between Two Experimental Procedures for Cyclic Plastic Characterization of High Strength Steel Sheets
,”
ASME J. Eng. Mater. Technol.
,
134
(
4
), p.
041008
.
42.
Yoshida
,
F.
, and
Uemori
,
T.
,
2003
, “
A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation
,”
Int. J. Mech. Sci.
,
45
(
10
), pp.
1687
1702
.
43.
Kang
,
J.
,
Wilkinson
,
D. S.
,
Wu
,
P. D.
,
Bruhis
,
M.
,
Jain
,
M.
,
Embury
,
J. D.
, and
Mishra
,
R. K.
,
2008
, “
Constitutive Behavior of AA5754 Sheet Materials at Large Strains
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031004
.
44.
Kang
,
J.
, and
Shen
,
G.
,
2014
, “
A Novel Shear Test Procedure for Determination of Constitutive Behavior of Automotive Aluminum Alloy Sheets
,”
ASTM International
, West Conshohocken, PA, Standard No.
B831-93
.
45.
GOM mbH
,
2011
, “
Aramis-Deformation Measurement Using the Grating Method, User's Manual, V6
,” GOM mbH, Braunschweig, Germany.
46.
Stander
,
N.
,
Roux
,
W.
,
Basudhar
,
A.
,
Eggleston
,
T.
,
Goel
,
T.
, and
Craig
,
K.
,
2014
, “
LS-OPT User's Manual, V5.1
,” Livermore Software Technology Corporation, Livermore, CA.http://www.lsoptsupport.com/documents/manuals/ls-opt/5.1/view
47.
Peng
,
Q.
,
Peng
,
X.
,
Wang
,
Y.
, and
Wang
,
T.
,
2015
, “
Investigation on V-Bending and Springback of Laminated Steel Sheets
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041002
.
48.
Hahn
,
M.
,
Khalifa
,
N. B.
,
Weddeling
,
C.
, and
Shabaninejad
,
A.
,
2016
, “
Springback Behavior of Carbon-Fiber-Reinforced Plastic Laminates With Metal Cover Layers in V-Die Bending
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121016
.
49.
Lee
,
M. G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
,
Wagoner
,
R. H.
, and
Chung
,
K.
,
2005
, “
Spring-Back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions—Part II: Characterization of Material Properties
,”
Int. J. Plast.
,
21
(
5
), pp.
883
914
.
You do not currently have access to this content.