When machining narrow grooves, corners, and other complex cavities with trochoidal milling, the irrationally large trochoidal step usually leads to chatter, while the conservative trochoidal step constrains the machining efficiency. In this paper, a stability prediction model of trochoidal milling is established to solve these problems. An approach considering trochoidal steps and spindle speeds is presented to predict stability boundary of trochoidal milling. With considering the varying cutter-workpiece engagements, the stability of trochoidal milling process is predicted by obtaining the stability lobes of different cutter location (CL) points along the trochoidal milling tool paths. Based on the proposed stability model, a trochoidal step optimization strategy is developed to improve the machining efficiency of trochoidal milling under other parameters in a given situation. Cutting experiments are performed on the machining center GMC 1600H/2 to show the effectiveness of the proposed trochoidal milling stability model. Finally, simulations are adopted to illustrate the optimization strategy.

References

References
1.
Marinac
,
D.
,
2000
, “
Toolpath Strategies for High Speed Machining
,”
Mod. Mach. Shop
,
14
, pp.
231
278
.https://www.highbeam.com/doc/1G1-70709465.html
2.
Lee
,
E.
,
2003
, “
Contour Offset Approach to Spiral Toolpath Generation With Constant Scallop Height
,”
Comput. Aided Des.
,
35
(
6
), pp.
511
518
.
3.
Schulz
,
H.
, and
Moriwaki
,
T.
,
1992
, “
High Speed Machining
,”
CIRP Ann.-Manuf. Technol.
,
41
(
2
), pp.
637
643
.
4.
Zheng
,
C. M.
, and
Wang
,
J. J.
,
2013
, “
Stability Prediction in Radial Immersion for Milling With Symmetric Structure
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
72
81
.
5.
Tyler
,
C. T.
,
Troutman
,
J.
, and
Schmitz
,
T. L.
,
2014
, “
Radial Depth of Cut Stability Lobe Diagrams With Process Damping Effects
,”
Precis. Eng.
,
40
, pp.
318
324
.
6.
Bieterman
,
M. B.
, and
Sandstrom
,
D. R.
,
2003
, “
A Curvilinear Tool-Path Method for Pocket Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(4), pp.
709
715
.
7.
Ibaraki
,
S.
,
Yamaji
,
I.
, and
Matsubara
,
A.
,
2010
, “
On the Removal of Critical Cutting Regions by Trochoidal Grooving
,”
Precis. Eng.
,
34
(
3
), pp.
467
473
.
8.
Elber
,
G.
,
Cohen
,
E.
, and
Drake
,
S.
,
2005
, “
MATHSM: Medial Axis Transform Toward High Speed Machining of Pockets
,”
Comput. Aided Des.
,
37
(
2
), pp.
241
250
.
9.
Rauch
,
M.
,
Duc
,
E.
, and
Hascoet
,
J. Y.
,
2009
, “
Improving Trochoidal Tool Paths Generation and Implementation Using Process Constraints Modelling
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
375
383
.
10.
Zhang
,
L.
, and
Zheng
,
L.
,
2004
, “
Prediction of Cutting Forces in Milling of Circular Corner Profiles
,”
Int. J. Mach. Tools Manuf.
,
44
(2–3), pp.
225
235
.
11.
Banerjee
,
A.
,
Feng
,
H. Y.
, and
Bordatchev
,
E. V.
,
2012
, “
Geometry of Chip Formation in Circular End Milling
,”
Int. J. Adv. Manuf. Technol.
,
59
(1), pp.
21
35
.
12.
Kardes
,
N.
, and
Altintas
,
Y.
,
2007
, “
Mechanics and Dynamics of the Circular Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
21
31
.
13.
Budak
,
E.
, and
Tekeli
,
A.
,
2005
, “
Maximizing Chatter Free Material Removal Rate in Milling Through Optimal Selection of Axial and Radial Depth of Cut Pairs
,”
CIRP Ann.-Manuf. Technol.
,
54
(
1
), pp.
353
356
.
14.
Otkur
,
M.
, and
Lazoglu
,
I.
,
2006
, “
Trochoidal Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(9), pp.
1324
1332
.
15.
Zhang
,
X. H.
,
Peng
,
F. Y.
, and
Qiu
,
F.
,
2014
, “
Prediction of Cutting Force in Trochoidal Milling Based on Radial Depth of Cut
,”
Adv. Mater. Res.
,
852
, pp.
457
462
.
16.
Merdol
,
S.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
17.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.
18.
Cheng
,
C.
,
Wang
,
Z.
,
Hung
,
W.
,
Bukkapatnam
,
S. T. S.
, and
Komanduri
,
R.
,
2015
, “
Ultra-Precision Machining Process Dynamics and Surface Quality Monitoring
,”
Procedia Manuf.
,
1
, pp.
607
618
.
19.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer
,
New York
.
20.
Ding
,
Y.
,
Zhu
,
L. M.
, and
Zhang
,
X. J.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
21.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2016
, “
Stability Analysis of Milling Processes With Periodic Spindle Speed Variation Via the Variable-Step Numerical Integration Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
114501
.
22.
Ding
,
Y.
,
Zhang
,
X.
, and
Ding
,
H.
,
2015
, “
Harmonic Differential Quadrature Method for Surface Location Error Prediction and Machining Parameter Optimization in Milling
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
024501
.
23.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
.
24.
Comak
,
A.
,
Ozsahin
,
O.
, and
Altintas
,
Y.
,
2016
, “
Stability of Milling Operations With Asymmetric Cutter Dynamics in Rotating Coordinates
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081004
.
25.
Song
,
Q.
,
Liu
,
Z.
, and
Shi
,
Z.
,
2014
, “
Chatter Stability for Micromilling Processes With Flat End Mill
,”
Int. J. Adv. Manuf. Technol.
,
71
(5), pp.
1159
1174
.
26.
Altintas
,
Y.
,
Stepan
,
G.
, and
Merdol
,
D.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
.
27.
Wan
,
M.
,
Zhang
,
W. H.
, and
Qin
,
G. H.
,
2007
, “
Efficient Calibration of Instantaneous Cutting Force Coefficients and Runout Parameters for General End Mills
,”
Int. J. Mach. Tools Manuf.
,
47
(
11
), pp.
1767
1776
.
You do not currently have access to this content.