The objective of this work is to develop and apply a spectral graph theoretic approach for differentiating between (classifying) additive manufactured (AM) parts contingent on the severity of their dimensional variation from laser-scanned coordinate measurements (3D point cloud). The novelty of the approach is in invoking spectral graph Laplacian eigenvalues as an extracted feature from the laser-scanned 3D point cloud data in conjunction with various machine learning techniques. The outcome is a new method that classifies the dimensional variation of an AM part by sampling less than 5% of the 2 million 3D point cloud data acquired (per part). This is a practically important result, because it reduces the measurement burden for postprocess quality assurance in AM—parts can be laser-scanned and their dimensional variation quickly assessed on the shop floor. To realize the research objective, the procedure is as follows. Test parts are made using the fused filament fabrication (FFF) polymer AM process. The FFF process conditions are varied per a phased design of experiments plan to produce parts with distinctive dimensional variations. Subsequently, each test part is laser scanned and 3D point cloud data are acquired. To classify the dimensional variation among parts, Laplacian eigenvalues are extracted from the 3D point cloud data and used as features within different machine learning approaches. Six machine learning approaches are juxtaposed: sparse representation, k-nearest neighbors, neural network, naïve Bayes, support vector machine, and decision tree. Of these, the sparse representation technique provides the highest classification accuracy (F-score > 97%).

References

References
1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
, New York.
2.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
3.
Rao
,
P. K.
,
Kong
,
Z.
,
Duty
,
C. E.
,
Smith
,
R. J.
,
Kunc
,
V.
, and
Love
,
L. J.
,
2016
, “
Assessment of Dimensional Integrity and Spatial Defect Localization in Additive Manufacturing Using Spectral Graph Theory
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051007
.
4.
Xu
,
L.
,
Huang
,
Q.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2013
, “
Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing
,”
ASME
Paper No. IMECE2013-66329.
5.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
.
6.
Ameta
,
G.
,
Lipman
,
R.
,
Moylan
,
S.
, and
Witherell
,
P.
,
2015
, “
Investigating the Role of Geometric Dimensioning and Tolerancing in Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111401
.
7.
Witherell
,
P.
,
Herron
,
J.
, and
Ameta
,
G.
,
2016
, “
Towards Annotations and Product Definitions for Additive Manufacturing
,”
Proc. CIRP
,
43
, pp.
339
344
.
8.
Pal
,
P.
,
2001
, “
An Easy Rapid Prototyping Technique With Point Cloud Data
,”
Rapid Prototyping J.
,
7
(
2
), pp.
82
90
.
9.
Bi
,
Z. M.
, and
Wang
,
L.
,
2010
, “
Advances in 3D Data Acquisition and Processing for Industrial Applications
,”
Rob. Comput. Integr. Manuf.
,
26
(
5
), pp.
403
413
.
10.
Iuliano
,
L.
, and
Minetola
,
P.
,
2008
, “
Enhancing Moulds Manufacturing by Means of Reverse Engineering
,”
Int. J. Adv. Manuf. Technol.
,
43
(
5
), pp.
551
562
.
11.
Savio
,
E.
,
De Chiffre
,
L.
, and
Schmitt
,
R.
,
2007
, “
Metrology of Freeform Shaped Parts
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
810
835
.
12.
Kruth
,
J. P.
,
Bartscher
,
M.
,
Carmignato
,
S.
,
Schmitt
,
R.
,
De Chiffre
,
L.
, and
Weckenmann
,
A.
,
2011
, “
Computed Tomography for Dimensional Metrology
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
821
842
.
13.
Raja
,
V.
,
Zhang
,
S.
,
Garside
,
J.
,
Ryall
,
C.
, and
Wimpenny
,
D.
,
2006
, “
Rapid and Cost-Effective Manufacturing of High-Integrity Aerospace Components
,”
Int. J. Adv. Manuf. Technol.
,
27
(
7–8
), pp.
759
773
.
14.
Ahn
,
D.
,
Kweon
,
J.-H.
,
Kwon
,
S.
,
Song
,
J.
, and
Lee
,
S.
,
2009
, “
Representation of Surface Roughness in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5593
5600
.
15.
Galantucci
,
L.
,
Lavecchia
,
F.
, and
Percoco
,
G.
,
2009
, “
Experimental Study Aiming to Enhance the Surface Finish of Fused Deposition Modeled Parts
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
189
192
.
16.
Anitha
,
R.
,
Arunachalam
,
S.
, and
Radhakrishnan
,
P.
,
2001
, “
Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling
,”
J. Mater. Process. Technol.
,
118
(
1
), pp.
385
388
.
17.
Steuben
,
J.
,
Van Bossuyt
,
D. L.
, and
Turner
,
C.
,
2015
, “
Design for Fused Filament Fabrication Additive Manufacturing
,”
ASME
Paper No. DETC2015-46355.
18.
Lanzotti
,
A.
,
Martorelli
,
M.
, and
Staiano
,
G.
,
2015
, “
Understanding Process Parameter Effects of RepRap Open-Source Three-Dimensional Printers Through a Design of Experiments Approach
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011017
.
19.
Kainat
,
M.
,
Adeeb
,
S.
,
Cheng
,
J. R.
,
Ferguson
,
J.
, and
Martens
,
M.
,
2012
, “
Identifying Initial Imperfection Patterns of Energy Pipes Using a 3D Laser Scanner
,”
ASME
Paper No. IPC2012-90201.
20.
Jiang
,
X.
,
Scott
,
P.
, and
Whitehouse
,
D.
,
2007
, “
Freeform Surface Characterisation—A Fresh Strategy
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
553
556
.
21.
Arrieta
,
C.
,
2012
, “
Quantitative Assessments of Geometric Errors for Rapid Prototyping in Medical Applications
,”
Rapid Prototyping J.
,
18
(
6
), pp.
431
442
.
22.
Bouyssie
,
J.
,
Bouyssie
,
S.
,
Sharrock
,
P.
, and
Duran
,
D.
,
1997
, “
Stereolithographic Models Derived From X-Ray Computed Tomography Reproduction Accuracy
,”
Surg. Radiol. Anat.
,
19
(
3
), pp.
193
199
.
23.
Huang
,
Q.
,
2016
, “
An Analytical Foundation for Optimal Compensation of Three-Dimensional Shape Deformation in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061010
.
24.
Jin
,
Y.
,
Joe Qin
,
S.
, and
Huang
,
Q.
,
2016
, “
Offline Predictive Control of Out-of-Plane Shape Deformation for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121005
.
25.
Xu
,
K.
, and
Chen
,
Y.
,
2015
, “
Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031014
.
26.
Cooke
,
A.
, and
Soons
,
J.
,
2010
, “
Variability in the Geometric Accuracy of Additively Manufactured Test Parts
,”
21st Annual International Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference
(
SFF
), Austin, TX, Aug. 9–11.https://sffsymposium.engr.utexas.edu/Manuscripts/2010/2010-01-Cooke.pdf
27.
Dsouza
,
A.
,
2016
, “
Experimental Evolutionary Optimization of Geometric Integrity in Fused Filament Fabrication (FFF) Additive Manufacturing (AM) Process
,”
M.S. thesis
, Binghamton University, Binghamton, NY.http://gradworks.umi.com/10/13/10137420.html
28.
Sabourin
,
E.
,
Houser
,
S. A.
, and
Helge Bøhn
,
J.
,
1997
, “
Accurate Exterior, Fast Interior Layered Manufacturing
,”
Rapid Prototyping J.
,
3
(
2
), pp.
44
52
.
29.
Huang
,
J.
, and
Menq
,
C.-H.
,
2002
, “
Automatic CAD Model Reconstruction From Multiple Point Clouds for Reverse Engineering
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
3
), pp.
160
170
.
30.
Woo
,
H.
,
Kang
,
E.
,
Wang
,
S.
, and
Lee
,
K. H.
,
2002
, “
A New Segmentation Method for Point Cloud Data
,”
Int. J. Mach. Tools Manuf.
,
42
(
2
), pp.
167
178
.
31.
Schnabel
,
R.
,
Wahl
,
R.
, and
Klein
,
R.
,
2007
, “
Efficient RANSAC for Point-Cloud Shape Detection
,”
Comput. Graphics Forum
,
26
(
2
), pp.
214
226
.
32.
Rao
,
P. K.
,
Beyca
,
O. F.
,
Kong
,
Z.
,
Bukkaptanam
,
S. T.
,
Case
,
K. E.
, and
Komanduri
,
R.
,
2015
, “
A Graph Theoretic Approach for Quantification of Surface Morphology and Its Application to Chemical Mechanical Planarization (CMP) Process
,”
IIE Trans.
,
47
(
10
), pp.
1088
1111
.
33.
Chung
,
F. R. K.
,
1997
,
Spectral Graph Theory
,
American Mathematical Society
,
Providence, RI
.
34.
Shuman
,
D. I.
,
Narang
,
S. K.
,
Frossard
,
P.
,
Ortega
,
A.
, and
Vandergheynst
,
P.
,
2013
, “
The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains
,”
IEEE Signal Process. Mag.
,
30
(
3
), pp.
83
98
.
35.
Shuman
,
D. I.
,
Ricaud
,
B.
, and
Vandergheynst
,
P.
,
2012
, “
A Windowed Graph Fourier Transform
,”
IEEE Statistical Signal Processing Workshop
(
SSP
), Ann Arbor, MI, Aug. 5–8, pp.
133
136
.
36.
Tootooni
,
M. S.
,
Rao
,
P. K.
,
Chou
,
C.-A.
, and
Kong
,
Z. J.
, 2016, “
A Spectral Graph Theoretic Approach for Monitoring Multivariate Time Series Data From Complex Dynamical Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
PP
(99), pp. 1–18.
37.
Bastani
,
K.
,
Rao
,
P. K.
, and
Kong
,
Z.
,
2016
, “
An Online Sparse Estimation-Based Classification Approach for Real-Time Monitoring in Advanced Manufacturing Processes From Heterogeneous Sensor Data
,”
IIE Trans.
,
48
(
7
), pp.
579
598
.
38.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the LASSO
,”
J. R. Stat. Soc., Ser. B
,
58
(1), pp.
267
288
.https://statweb.stanford.edu/~tibs/lasso/lasso.pdf
39.
Tropp
,
J. A.
, and
Gilbert
,
A. C.
,
2007
, “
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
,”
IEEE Trans. Inf. Theory
,
53
(
12
), pp.
4655
4666
.
40.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.
41.
Zhan
,
C.
,
Chen
,
G.
, and
Yeung
,
L. F.
,
2010
, “
On the Distributions of Laplacian Eigenvalues Versus Node Degrees in Complex Networks
,”
Physica A
,
389
(
8
), pp.
1779
1788
.
42.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
43.
Hagan
,
M. T.
,
Demuth
,
H. B.
,
Beale
,
M. H.
, and
De Jesús
,
O.
,
1996
,
Neural Network Design
,
PWS Publishing Company
,
Boston, MA
.
44.
Fürnkranz
,
J.
,
2002
, “
Round Robin Classification
,”
J. Mach. Learn. Res.
,
2
, pp.
721
747
.http://www.jmlr.org/papers/volume2/fuernkranz02a/fuernkranz02a.pdf
You do not currently have access to this content.