Subsurface damage (SSD) and grinding damage-induced stress (GDIS) are a focus of attention in the study of grinding mechanisms. Our previous study proposed a load identification method and analyzed the GDIS in a silicon wafer ground (Zhou et al., 2016, “A Load Identification Method for the GDIS Distribution in Silicon Wafers,” Int. J. Mach. Tools Manuf., 107, pp. 1–7.). In this paper, a more concise method for GDIS analysis is proposed. The new method is based on the curvature analysis of the chip deformation, and a deterministic solution of residual stress can be derived out. Relying on the new method, this study investigates the GDIS distribution feature in the silicon wafer ground by a #600 diamond wheel (average grit size 24 μm). The analysis results show that the two principal stresses in the damage layer are closer to each other than that ground by the #3000 diamond wheel (average grit size 4 μm), which indicates that the GDIS distribution feature in a ground silicon wafer is related to the depth of damage layer. Moreover, the GDIS distribution presents a correlation with crystalline orientation. To clarify these results, SSD is observed by transmission electron microscopy (TEM). It is found that the type of defects under the surface is more diversified and irregular than that observed in the silicon surface ground by the #3000 diamond wheel. Additionally, it is found that most cracks initiate and propagate along the slip plane due to the high shear stress and high dislocation density instead of the tensile stress which is recognized as the dominant factor of crack generation in a brittle materials grinding process.

References

References
1.
Zhou
,
L.
,
Tian
,
Y. B.
,
Huang
,
H.
,
Sato, H.
, and
Shimizu, J.
,
2011
, “
A Study on the Diamond Grinding of Ultra-Thin Silicon Wafers
,”
Proc. Inst. Mech. Eng., Part B
,
226
(1), pp. 66–75.
2.
Jeon
,
E. B.
,
Park
,
J. D.
,
Song
,
J. H.
,
Lee, H. J.
, and
Kim, H. S.
,
2012
, “
Bi-Axial Fracture Strength Characteristic of an Ultra-Thin Flash Memory Chip
,”
J. Micromech. Microeng.
,
22
(
10
), p.
105014
.
3.
Zarudi
,
I.
, and
Zhang
,
L.
,
1996
, “
Subsurface Damage in Single-Crystal Silicon Due to Grinding and Polishing
,”
J. Mater. Sci. Lett.
,
15
(
7
), pp.
586
587
.
4.
Chen
,
J.
, and
De Wolf
,
I.
,
2003
, “
Study of Damage and Stress Induced by Backgrinding in Si Wafers
,”
Semicond. Sci. Technol.
,
18
(
4
), p.
261
.
5.
De Wolf
,
I.
,
1996
, “
Micro-Raman Spectroscopy to Study Local Mechanical Stress in Silicon Integrated Circuits
,”
Semicond. Sci. Technol.
,
11
(
2
), p.
139
.
6.
Janssen
,
G.
,
Abdalla
,
M. M.
,
van Keulen
,
F.
,
Pujada, B. R.
, and
van Venrooy, B.
,
2009
, “
Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments From Polycrystalline Steel Strips to Single Crystal Silicon Wafers
,”
Thin Solid Films
,
517
(
6
), pp.
1858
1867
.
7.
Stoney
,
G. G.
,
1909
, “
The Tension of Metallic Films Deposited by Electrolysis
,”
Proc. R. Soc. London, Ser. A
,
82
(
553
), pp.
172
175
.
8.
Haapalinna
,
A.
,
Nevas
,
S.
, and
Pähler
,
D.
,
2004
, “
Rotational Grinding of Silicon Wafers—Sub-Surface Damage Inspection
,”
Mater. Sci. Eng.: B
,
107
(
3
), pp.
321
331
.
9.
Paehler
,
D.
,
Schneider
,
D.
, and
Herben
,
M.
,
2007
, “
Nondestructive Characterization of Sub-Surface Damage in Rotational Ground Silicon Wafers by Laser Acoustics
,”
Microelectron. Eng.
,
84
(
2
), pp.
340
354
.
10.
Pahler
,
D.
,
2009
, “
Rotational Grinding of Silicon Wafers
,” German Ph.D. thesis, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany.
11.
Yan
,
J. W.
,
Asami
,
T.
,
Harada
,
H.
, and
Kuriyagawa, T.
,
2012
, “
Crystallographic Effect on Subsurface Damage Formation in Silicon Microcutting
,”
CIRP Ann.-Manuf. Technol.
,
61
(
1
), pp.
131
134
.
12.
O'Connor
,
B. P.
,
Marsh
,
E. R.
, and
Couey
,
J. A.
,
2005
, “
On the Effect of Crystallographic Orientation on Ductile Material Removal in Silicon
,”
Precis. Eng.
,
29
(
1
), pp.
124
132
.
13.
Zhou
,
P.
,
Xu
,
S. C.
,
Wang
,
Z. G.
,
Yan, Y.
,
Kang, R. K.
, and
Guo, D. M.
,
2016
, “
A Load Identification Method for the Grinding Damage Induced Stress (GDIS) Distribution in Silicon Wafers
,”
Int. J. Mach. Tools Manuf.
,
107
, pp.
1
7
.
14.
Marks
,
M. R.
,
Hassan
,
Z.
, and
Cheong
,
K. Y.
,
2014
, “
Characterization Methods for Ultrathin Wafer and Die Quality: A Review
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
4
(
12
), pp.
2042
2057
.
15.
Sun, J. L., Qin, F., Ren, C., Wang, Z. K., and Tang, L.,
2014
, “
Residual Stress Measurement of the Ground Wafer by Raman Spectroscopy
,”
15th International Conference on Electronic Packaging Technology
(
ICEPT
), Chengdu, China, Aug. 12–15, pp.
867
870
.
16.
Tönshoff
,
H. K.
,
Schmieden
,
W.
,
Inasaki
,
I.
,
Konig, W.
, and
Spur, G.
,
1990
, “
Abrasive Machining of Silicon
,”
CIRP Ann.-Manuf. Technol.
,
39
(
2
), pp.
621
635
.
17.
Pei
,
Z. J.
, and
Strasbaugh
,
A.
,
2002
, “
Fine Grinding of Silicon Wafers: Designed Experiments
,”
Int. J. Mach. Tools Manuf.
,
42
(
3
), pp.
395
404
.
18.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What Is the Young's Modulus of Silicon?
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
.
19.
Draney
,
N. R.
,
Liu
,
J. J.
, and
Jiang
,
T.
,
2004
, “
Experimental Investigation of Bare Silicon Wafer Warp
,”
IEEE Workshop on Microelectronics and Electron Devices
(
WMED
), Boise, ID, Apr. 16, pp.
120
123
.
20.
Liu
,
H. J.
,
Dong
,
Z. G.
,
Kang
,
R. K.
,
Zhou, P.
, and
Gao, S.
,
2015
, “
Analysis of Factors Affecting Gravity-Induced Deflection for Large and Thin Wafers in Flatness Measurement Using Three-Point-Support Method
,”
Metrol. Meas. Syst.
,
22
(4) pp.
531
546
.
21.
Wang
,
H. L.
,
Yao
,
Y. L.
, and
Chen
,
H. Q.
,
2015
, “
Removal Mechanism and Defect Characterization for Glass-Slide Laser Scribing of CdTe/CdS Multilayer in Solar Cells
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061006
.
You do not currently have access to this content.