During the past few years, metal-based additive manufacturing technologies have evolved and may enable the direct fabrication of heterogeneous objects with full spatial material variations. A heterogeneous object has potentially many advantages, and in many cases can realize the appearance and/or functionality that homogeneous objects cannot achieve. In this work, we employ a preprocess computing combined with a multi-objective optimization algorithm based on the modeling of the direct metal deposition (DMD) of dissimilar materials to optimize the fabrication process. The optimization methodology is applied to the deposition of Inconel 718 and Ti–6Al–4V powders with prescribed powder feed rates. Eight design variables are accounted in the example, including the injection angles, injection velocities, and injection nozzle diameters for the two materials, as well as the laser power and scanning speed. The multi-objective optimization considers that the laser energy consumption and the powder waste during the fabrication process should be minimized. The optimization software modeFRONTIER® is used to drive the computation procedure with a matlab code. The results show the design and objective spaces of the Pareto optimal solutions and enable the users to select preferred setting configurations from the set of optimal solutions. A feasible design is selected which corresponds to a relatively low material cost, with laser power 370 W, scanning speed 55 mm/s, injection angles 15 deg, injection velocities 45 m/s for Inconel 718, 30 m/s for Ti–6Al–4V, and nozzle widths 0.5 mm under the given condition.

References

References
1.
Hu
,
Y.
,
Fadel
,
G. M.
,
Blouin
,
V. Y.
, and
White
,
D. R.
,
2006
, “
Optimal Design for Additive Manufacturing of Heterogeneous Objects Using Ultrasonic Consolidation
,”
Virtual Phys. Prototyping
,
1
(
1
), pp.
53
62
.
2.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput. Aided Des.
,
39
(
4
), pp.
284
301
.
3.
Koizumi
,
M.
,
1997
, “
FGM Activities in Japan
,”
Compos. Part B
,
28B
(
1–2
), pp.
1
4
.
4.
Punch
,
W. F.
,
Averill
,
R. C.
,
Goodman
,
E. D.
,
Lin
,
S. C.
, and
Ding
,
Y.
,
1995
, “
Using Genetic Algorithms to Design Laminated Composite Structures
,”
IEEE Expert
,
10
(
1
), pp.
42
49
.
5.
Xing
,
A.
,
Zhao
,
J.
,
Huang
,
C.
, and
Zhang
,
J.
,
1998
, “
Development of an Advanced Ceramic Tool Material—Functionally Gradient Cutting Ceramics
,”
Mater. Sci. Eng.
,
A248
(
1–2
), pp.
125
131
.
6.
Huang
,
J.
, and
Fadel
,
G.
,
2000
, “
Heterogeneous Flywheel Modeling and Optimization
,”
Mater. Des.
,
21
(
2
), pp.
111
125
.
7.
Huang
,
J.
, and
Fadel
,
G. M.
,
2001
, “
Bi-Objective Optimization Design of Heterogeneous Injection Mold Cooling Systems
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
226
239
.
8.
Müller
,
E.
,
Drašar
,
Č.
,
Schilz
,
J.
, and
Kaysser
,
W. A.
,
2003
, “
Functionally Graded Materials for Sensor and Energy Applications
,”
Mater. Sci. Eng.
,
A362
(
1–2
), pp.
17
39
.
9.
Watari
,
F.
,
Yokoyama
,
A.
,
Omori
,
M.
,
Hirai
,
T.
,
Kondo
,
H.
,
Uo
,
M.
, and
Kawasaki
,
T.
,
2004
, “
Biocompatibility of Materials and Development to Functionally Graded Implant for Bio-Medical Application
,”
Compos. Sci. Technol.
,
64
(
6
), pp.
893
908
.
10.
Charudilaka
,
S.
,
2007
, “
A Study of Two Commercial Systems for Polishing Aluminum Oxide, Zirconia and Feldspathic Dental Porcelain
,”
Master’s thesis
, University of Connecticut, Storrs, CT.
11.
Balla
,
V. K.
,
Bandyopadhyay
,
P. P.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2007
, “
Compositionally Graded Yttria-Stabilized Zirconia Coating on Stainless Steel Using Laser Engineered Net Shaping (LENS™)
,”
Scr. Mater.
,
57
(
9
), pp.
861
864
.
12.
Krishna
,
B. V.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2008
, “
Fabrication of Porous NiTi Shape Memory Alloy Structures Using Laser Engineered Net Shaping
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
89B
(
2
), pp.
481
490
.
13.
Hofmann
,
D. C.
,
Roberts
,
S.
,
Otis
,
R.
,
Kolodziejska
,
J.
,
Dillon
,
R. P.
,
Suh
,
J.
,
Shapiro
,
A. A.
,
Liu
,
Z.
, and
Borgonia
,
J.
,
2014
, “
Developing Gradient Metal Alloys Through Radial Deposition Additive Manufacturing
,”
Nat. Sci. Rep.
,
4
, p.
5357
.
14.
Schwendner
,
K. I.
,
Banerjee
,
R.
,
Collins
,
P. C.
,
Brice
,
C. A.
, and
Fraser
,
H. L.
,
2001
, “
Direct Laser Deposition of Alloys From Elemental Powder Blends
,”
Scr. Mater.
,
45
(
10
), pp.
1123
1129
.
15.
Collins
,
P. C.
,
Banerjee
,
R.
, and
Fraser
,
H. L.
,
2003
, “
The Influence of the Enthalpy of Mixing During the Laser Deposition of Complex Titanium Alloys Using Elemental Blends
,”
Scr. Mater.
,
48
(
10
), pp.
1445
1450
.
16.
Domack
,
M. S.
, and
Baughman
,
J. M.
,
2005
, “
Development of Nickel-Titanium Graded Composition Components
,”
Rapid Prototyping J.
,
11
(
1
), pp.
41
51
.
17.
Zhong
,
M.
,
Liu
,
W.
,
Zhang
,
Y.
, and
Zhu
,
X.
,
2006
, “
Formation of WC/Ni Hard Alloy Coating by Laser Cladding of W/C/Ni Pure Element Powder Blend
,”
Int. J. Refract. Met. Hard Mater.
,
24
(
6
), pp.
453
460
.
18.
Yue
,
T. M.
, and
Li
,
T.
,
2008
, “
Laser Cladding of Ni/Cu/Al Functionally Graded Coating on Magnesium Substrate
,”
Surf. Coat. Technol.
,
202
(
23
), pp.
3043
3049
.
19.
Lewis
,
G. K.
, and
Schlienger
,
E.
,
2000
, “
Practical Considerations and Capabilities for Laser Assisted Direct Metal Deposition
,”
Mater. Des.
,
21
(
4
), pp.
417
423
.
20.
Liu
,
W.
, and
DuPont
,
J. N.
,
2003
, “
Fabrication of Functionally Graded TiC/Ti Composites by Laser Engineered Net Shaping
,”
Scr. Mater.
,
48
(
9
), pp.
1337
1342
.
21.
Pintsuk
,
G.
,
Brünings
,
S. E.
,
Döring
,
J.-E.
,
Linke
,
J.
,
Smid
,
I.
, and
Xue
,
L.
,
2003
, “
Development of W/Cu—Functionally Graded Materials
,”
Fusion Eng. Des.
,
66–68
, pp.
237
240
.
22.
Yakovlev
,
A.
,
Trunova
,
E.
,
Grevey
,
D.
,
Pilloz
,
M.
, and
Smurov
,
I.
,
2005
, “
Laser-Assisted Direct Manufacturing of Functionally Graded 3D Objects
,”
Surf. Coat. Technol.
,
190
(
1
), pp.
15
24
.
23.
Kieback
,
B.
,
Neubrand
,
A.
, and
Riedel
,
H.
,
2003
, “
Processing Techniques for Functionally Graded Materials
,”
Mater. Sci. Eng. A
,
362
(
1–2
), pp.
81
105
.
24.
Han
,
L.
,
Liou
,
F. W.
, and
Phatak
,
K. M.
,
2004
, “
Modeling of Laser Cladding With Powder Injection
,”
Metall. Mater. Trans. B
,
35
(
6
), pp.
1139
1150
.
25.
Wang
,
L.
,
Felicelli
,
S. D.
, and
Craig
,
J. E.
,
2009
, “
Experimental and Numerical Study of the LENS Rapid Fabrication Process
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041019
26.
Kamara
,
A. M.
,
Wang
,
W.
,
Marimuthu
,
S.
, and
Li
,
L.
,
2011
, “
Modeling of the Melt Pool Geometry in the Laser Deposition of Nickel Alloys Using the Anisotropic Enhanced Thermal Conductivity Approach
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
1
), pp.
87
99
.
27.
Wen
,
S. Y.
,
Shin
,
Y. C.
,
Murthy
,
J. Y.
, and
Sojka
,
P. E.
,
2009
, “
Modeling of Coaxial Powder Flow for the Laser Direct Deposition Process
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5867
5877
.
28.
Wen
,
S.
, and
Shin
,
Y.
,
2011
, “
Modeling of the Off-Axis High Power Diode Laser Cladding Process
,”
ASME J. Heat Transfer
,
133
(
3
), p.
031007
.
29.
Balu
,
P.
,
Leggett
,
P.
, and
Kovacevic
,
R.
,
2012
, “
Parametric Study on a Coaxial Multi-Material Powder Flow in Laser-Based Powder Deposition Process
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1598
1610
.
30.
Grujicic
,
M.
,
Hu
,
Y.
,
Fadel
,
G. M.
, and
Keicher
,
D. M.
,
2001
, “
Optimization of the LENS Rapid Fabrication Process for In-Flight Melting of Feed Powder
,”
J. Mater. Synth. Process.
,
9
(
5
), pp.
223
233
.
31.
Liu
,
C.
, and
Liu
,
J.
,
2003
, “
Thermal Process of a Powder Particle in Coaxial Laser Cladding
,”
Opt. Laser Technol.
,
35
(
2
), pp.
81
86
.
32.
Yan
,
J.
,
Masoudi
,
N.
,
Battiato
,
I.
, and
Fadel
,
G.
,
2015
, “
Optimization of Process Parameters in Laser Engineered Net Shaping (LENS) Deposition of Multi-Materials
,”
ASME
Paper No. DETC2015-47856.
33.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
,
2004
, “
3-D Finite Element Modeling of Laser Cladding by Powder Injection: Effects of Laser Pulse Shaping on the Process
,”
Opt. Lasers Eng.
,
41
(
6
), pp.
849
867
.
34.
Saedodin
,
S.
,
Akbari
,
M.
,
Raisi
,
A.
, and
Torabi
,
M.
,
2010
, “
Calculation and Investigation of Temperature Distribution and Melt Pool Size Due to a Moving Laser Heat Source Using the Solution of Hyperbolic Heat Transfer Equation
,”
World Appl. Sci. J.
,
11
(
10
), pp.
1273
1281
.
35.
Urbanic
,
R. J.
,
Saqib
,
S. M.
, and
Aggarwal
,
K.
,
2016
, “
Using Predictive Modeling and Classification Methods for Single and Overlapping Bead Laser Cladding to Understand Bead Geometry to Process Parameter Relationships
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051012
.
36.
Mazumder
,
J.
,
Dutta
,
D.
,
Kikuchi
,
N.
, and
Ghosh
,
A.
,
2000
, “
Closed Loop Direct Metal Deposition: Art to Part
,”
Opt. Lasers Eng.
,
34
(
4–6
), pp.
397
414
.
37.
Toyserkani
,
E.
,
2003
, “
Modeling and Control of Laser Cladding by Powder Injection
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
38.
Salehi
,
D.
, and
Brandt
,
M.
,
2006
, “
Melt Pool Temperature Control Using LabVIEW in Nd:YAG Laser Blown Powder
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3–4
), pp.
273
278
.
39.
Peyre
,
P.
,
Aubry
,
P.
,
Fabbro
,
R.
,
Neveu
,
R.
, and
Longuet
,
A.
,
2008
, “
Analytical and Numerical Modeling of the Direct Metal Deposition Laser Process
,”
J. Phys. D: Appl. Phys.
,
41
(
2
), p.
025403
.
40.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021009
.
41.
Cao
,
X.
, and
Ayalew
,
B.
,
2015
, “
Partial Differential Equation-Based Multivariable Control Input Optimization for Laser-Aided Powder Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031001
.
42.
Morville
,
S.
,
Carin
,
M.
,
Peyre
,
P.
,
Gharbi
,
M.
,
Carron
,
D.
,
Masson
,
P. L.
, and
Fabbro
,
R.
,
2012
, “
2D Longitudinal Modeling of Heat Transfer and Fluid Flow During Multilayered Direct Laser Metal Deposition Process
,”
J. Laser Appl.
,
24
(
3
), p.
032008
.
43.
Chande
,
T.
, and
Mazumder
,
J.
,
1985
, “
Two-Dimensional, Transient Model for Mass Transport in Laser Surface Alloying
,”
J. Appl. Phys.
,
57
(
6
), pp.
2226
2232
.
44.
Qi
,
H.
, and
Mazumder
,
J.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys.
,
100
(
2
), p.
024903
.
45.
Vetter
,
P. A.
,
Fontaine
,
J.
,
Engel
,
T.
,
Lagrange
,
L.
, and
Marchione
,
T.
,
1993
, “
Characterization of Laser-Material Interaction During Laser Cladding Process
,”
Trans. Eng. Sci.
,
2
, pp.
185
194
.
46.
Antipas
,
G. S. E.
,
2015
, “
Experimental and First Principles Assessment of Plasma Attenuation During Laser Treatment of an Al Alloy
,”
Trans. IMF
,
93
(
1
), pp.
53
56
.
47.
Luo
,
Y.
,
Tang
,
X.
,
Lu
,
F.
,
Chen
,
Q.
, and
Cui
,
H.
,
2015
, “
Spatial Distribution Characteristics of Plasma Plume on Attenuation of Laser Radiation Under Subatmospheric Pressure
,”
Appl. Opt.
,
54
(
5
), pp.
1090
1096
.
48.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops—Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
49.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops—Part II
,”
Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.
50.
Gu
,
S.
,
McCartney
,
D. G.
,
Eastwick
,
C. N.
, and
Simmons
,
K.
,
2004
, “
Numerical Modeling of In-Flight Characteristic of Inconel 625 Particles During High-Velocity Oxy-Fuel Thermal Spraying
,”
J. Therm. Spray Technol.
,
13
(
2
), pp.
200
213
.
51.
Yan
,
J.
,
Battiato
,
I.
, and
Fadel
,
G. M.
,
2014
, “
Optimization of Multi-Materials In-Flight Melting in Laser Engineered Net Shaping (LENS) Process
,”
Symposium on Solid Freeform Fabrication
(
SFF
), University of Texas at Austin, Austin, TX, Aug. 4–6, pp. 1158–1178.
52.
Jouvard
,
J. M.
,
Grevey
,
D. F.
,
Lemoine
,
F.
, and
Vannes
,
A. B.
,
1997
, “
Continuous Wave Nd:YAG Laser Cladding Modeling: A Physical Study of Track Creation During Low Power Processing
,”
J. Laser Appl.
,
9
(
1
), pp.
43
50
.
53.
Lin
,
J.
,
2000
, “
Laser Attenuation of the Focused Powder Streams in Coaxial Laser Cladding
,”
J. Laser Appl.
,
12
(
1
), pp.
28
33
.
54.
Pinkerton
,
A. J.
,
2007
, “
An Analytical Model of Beam Attenuation and Powder Heating During Coaxial Laser Direct Metal Deposition
,”
J. Phys. D: Appl. Phys.
,
40
(
23
), pp.
7323
7334
.
55.
Zhou
,
J.
, and
Liu
,
H.
,
2009
,
Laser Rapid Manufacturing Technology and Application
,
Chemical Industry Press
,
Beijing, China
, Chap. 6.
56.
Tabernero
,
I.
,
Lamikiz
,
A.
,
Martínez
,
S.
,
Ukar
,
E.
, and
Lacalle
,
L. N.
,
2012
, “
Modeling of Energy Attenuation Due to Powder Flow—Laser Beam Interaction During Laser Cladding Process
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
516
522
.
57.
Fu
,
Y.
,
Loredo
,
A.
,
Martin
,
B.
, and
Vannes
,
A. B.
,
2002
, “
A Theoretical Model for Laser and Powder Particles Interaction During Laser Cladding
,”
J. Mater. Process. Technol.
,
128
(
1–3
), pp.
106
112
.
58.
Huang
,
Y.
,
Liang
,
G.
,
Su
,
J.
, and
Li
,
J.
,
2005
, “
Interaction Between Laser Beam and Powder Stream in the Process of Laser Cladding With Powder Feeding
,”
Model. Simul. Mater. Sci. Eng.
,
13
(
1
), pp.
47
56
.
59.
Liu
,
J.
,
Li
,
L.
,
Zhang
,
Y.
, and
Xie
,
X.
,
2005
, “
Attenuation of Laser Power of a Focused Gaussian Beam During Interaction Between a Laser and Powder in Coaxial Laser Cladding
,”
J. Phys. D: Appl. Phys.
,
38
(
10
), pp.
1546
1550
.
60.
He
,
X.
, and
Mazumder
,
J.
,
2007
, “
Transport Phenomena During Direct Metal Deposition
,”
J. Appl. Phys.
,
101
(
5
), p.
053113
.
61.
Osman
,
T.
, and
Boucheffa
,
A.
,
2009
, “
Analytical Solution for the 3D Steady State Condition in a Solid Subjected to a Moving Rectangular Heat Source and Surface Cooling
,”
C. R. Méc.
,
337
(
2
), pp.
107
111
.
62.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15B
(
2
), pp.
299
305
.
63.
Wang
,
H.
,
Zhang
,
Y.
, and
Chen
,
K.
,
2016
, “
Modeling of Temperature Distribution in Laser Welding of Lapped Martensitic Steel M1500 and Softening Estimation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111006
.
64.
Valsecchi
,
B.
,
Previtali
,
B.
, and
Gariboldi
,
E.
,
2012
, “
Fibre Laser Cladding of Turbine Blade Leading Edges: The Effect of Specific Energy on Clad Dilution
,”
Int. J. Struct. Integr.
,
3
(
4
), pp.
377
395
.
65.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
In Situ Monitoring and Characterization of Distortion During Laser Cladding of Inconel 625
,”
J. Mater. Process. Technol.
,
220
, pp.
135
145
.
66.
Chen
,
H.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2011
, “
Fibre Laser Welding of Dissimilar Alloys of Ti-6Al-4V and Inconel 718 for Aerospace Applications
,”
Int. J. Adv. Manuf. Technol.
,
52
(
9
), pp.
977
987
.
67.
Lahoz
,
R.
, and
Puértolas
,
J. A.
,
2004
, “
Training and Two-Way Shape Memory in NiTi Alloys: Influence on Thermal Parameters
,”
J. Alloys Compd.
,
381
(
1–2
), pp.
130
136
.
68.
Ross
,
R. B.
,
1992
,
Metallic Materials Specification Handbook
,
Springer Science + Business Media, B. V., Dordrecht
,
The Netherland
.
69.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M. H.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti–6Al–4V (TA6V) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
.
You do not currently have access to this content.