In this study, an AZ31 magnesium alloy plate was processed by constrained groove pressing (CGP) under three deformation cycles at temperatures from 503 to 448 K. The process resulted in a homogeneous fine grain microstructure with an average grain size of 1.8 μm. The as-processed microstructure contained a high fraction of low-angle grain boundaries (LAGB) of subgrains and dislocation boundaries that remained in the structure due to incomplete dynamic recovery and recrystallization. The material's yield strength was found to have increased from 175 to 242 MPa and with a significant weakening of its initial basal texture. The microstructure stability of the CGP-processed material was further investigated by isothermal annealing at temperature from 473 to 623 K and for different time. Abnormal grain growth was observed at 623 K, and this was associated with an increased in nonbasal grains at the expense of basal grains. The effect of annealing temperature and time on the grain growth kinetics was interpreted by using the grain growth equation,  Dn+D0n=kt, and Arrhenius equation, k=k0exp((Q/RT)). The activation energy (Q) was estimated to be 27.8 kJ/mol which was significantly lower than the activation energy for lattice self-diffusion (QL = 135 kJ/mol) and grain boundary diffusion (Qgb = 92 kJ/mol) in pure magnesium. The result shows that grain growth is rapid but average grain size still remained smaller than the as-received material, especially at the shorter annealing time.

References

References
1.
Monteiro
,
W. A.
,
Buso
,
S. J.
, and
Da
,
L. V.
,
2012
, “
Application of Magnesium Alloys in Transport
,”
New Features on Magnesium Alloys
,
InTech
,
Rijeka, Croatia
.
2.
James
,
M.
,
Kihiu
,
J. M.
,
Rading
,
G. O.
, and
Kimotho
,
J. K.
,
2013
, “
Use of Magnesium Alloys in Optimizing the Weight of Automobile: Current Trends and Opportunities
,” Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya, accessed Apr. 28, 2017, http://journals.jkuat.ac.ke/index.php/sri/article/view/49/52
3.
Barnett
,
M. R.
,
2007
, “
Twinning and the Ductility of Magnesium Alloys: Part I: ‘Tension’ Twins
,”
Mater. Sci. Eng., A
,
464
(
1–2
), pp.
1
7
.
4.
Hirsch
,
J.
, and
Al-Samman
,
T.
,
2013
, “
Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications
,”
Acta Mater.
,
61
(
3
), pp.
818
843
.
5.
Zarandi
,
F.
, and
Yue
,
S.
,
2011
, “
Magnesium Sheet; Challenges and Opportunities
,”
Magnesium Alloys—Design, Processing and Properties
,
F.
Czerwinski
, ed.,
InTech
,
Rijeka, Croatia
.
6.
Suh
,
J.
,
Victoria-Hernandez
,
J.
,
Letzig
,
D.
,
Golle
,
R.
,
Yi
,
S.
,
Bohlen
,
J.
, and
Volk
,
W.
,
2014
, “
Improvement of Ductility at Room Temperature of Mg-3Al-1Zn Alloy Sheets Processed by Equal Channel Angular Pressing
,”
Procedia Eng.
,
81
, pp.
1517
1522
.
7.
Zhan
,
M.-Y.
,
Zhang
,
W.-W.
, and
Zhang
,
D.-T.
,
2011
, “
Production of Mg-Al-Zn Magnesium Alloy Sheets With Ultrafine-Grain Microstructure by Accumulative Roll-Bonding
,”
Trans. Nonferrous Met. Soc. China
,
21
(
5
), pp.
991
997
.
8.
Yang
,
Q.
, and
Ghosh
,
A. K.
,
2006
, “
Production of Ultrafine-Grain Microstructure in Mg Alloy by Alternate Biaxial Reverse Corrugation
,”
Acta Mater.
,
54
(
19
), pp.
5147
5158
.
9.
Chang
,
C. I.
,
Lee
,
C. J.
, and
Huang
,
J. C.
,
2004
, “
Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys
,”
Scr. Mater.
,
51
(
6
), pp.
509
514
.
10.
Young
,
J. P.
,
Askari
,
H.
,
Hovanski
,
Y.
,
Heiden
,
M. J.
, and
Field
,
D. P.
,
2015
, “
Thermal Microstructural Stability of AZ31 Magnesium After Severe Plastic Deformation
,”
Mater. Charact.
,
101
, pp.
9
19
.
11.
Ma
,
J.
,
Yang
,
X.
,
Huo
,
Q.
,
Sun
,
H.
,
Qin
,
J.
, and
Wang
,
J.
,
2013
, “
Mechanical Properties and Grain Growth Kinetics in Magnesium Alloy After Accumulative Compression Bonding
,”
Mater. Des.
,
47
, pp.
505
509
.
12.
Fong
,
K. S.
,
Tan
,
M. J.
,
Chua
,
B. W.
, and
Atsushi
,
D.
,
2015
, “
Enabling Wider Use of Magnesium Alloys for Lightweight Applications by Improving the Formability by Groove Pressing
,”
Procedia CIRP
,
26
, pp.
449
454
.
13.
Fong
,
K. S.
,
Atsushi
,
D.
,
Tan
,
M. J.
, and
Chua
,
B. W.
,
2015
, “
Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051004
.
14.
Kim
,
H. K.
, and
Kim
,
W. J.
,
2004
, “
Microstructural Instability and Strength of an AZ31 Mg Alloy After Severe Plastic Deformation
,”
Mater. Sci. Eng., A
,
385
(
1–2
), pp.
300
308
.
15.
Stráská
,
J.
,
Janeček
,
M.
,
Čížek
,
J.
,
Stráský
,
J.
, and
Hadzima
,
B.
,
2014
, “
Microstructure Stability of Ultra-Fine Grained Magnesium Alloy AZ31 Processed by Extrusion and Equal-Channel Angular Pressing (EX–ECAP)
,”
Mater. Charact.
,
94
, pp.
69
79
.
16.
Wang
,
X.
,
Hu
,
L.
,
Liu
,
K.
, and
Zhang
,
Y.
,
2012
, “
Grain Growth Kinetics of Bulk AZ31 Magnesium Alloy by Hot Pressing
,”
J. Alloys Compd.
,
527
, pp.
193
196
.
17.
Ma
,
Q.
,
Li
,
B.
,
Marin
,
E. B.
, and
Horstemeyer
,
S. J.
,
2011
, “
Twinning-Induced Dynamic Recrystallization in a Magnesium Alloy Extruded at 450 °C
,”
Scr. Mater.
,
65
(
9
), pp.
823
826
.
18.
Kuhlmann-Wilsdorf
,
D.
,
1991
, “
Geometrically Necessary, Incidental and Subgrain Boundaries
,”
Scr. Metall. Mater.
,
25
(
7
), pp.
1557
1562
.
19.
Galiyev
,
A.
,
Kaibyshev
,
R.
, and
Sakai
,
T.
,
2003
, “
Continuous Dynamic Recrystalllization in Magnesium Alloy
,”
Mater. Sci. Forum
,
419–422
, pp.
509
514
.
20.
Tan
,
J. C.
, and
Tan
,
M. J.
,
2003
, “
Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet
,”
Mater. Sci. Eng., A
,
339
(
1
), pp.
124
132
.
21.
Watanabe
,
H.
,
Tsutsui
,
H.
,
Mukai
,
T.
,
Ishikawa
,
K.
,
Okanda
,
Y.
,
Kohzu
,
M.
, and
Higashi
,
K.
,
2001
, “
Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recrystallization
,”
Mater. Trans.
,
42
(
7
), pp.
1200
1205
.
22.
Xu
,
S. W.
,
Kamado
,
S.
, and
Honma
,
T.
,
2010
, “
Recrystallization Mechanism and the Relationship Between Grain Size and Zener–Hollomon Parameter of Mg–Al–Zn–Ca Alloys During Hot Compression
,”
Scr. Mater.
,
63
(
3
), pp.
293
296
.
23.
Shin
,
D. H.
,
Park
,
J.-J.
,
Kim
,
Y.-S.
, and
Park
,
K.-T.
,
2002
, “
Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum
,”
Mater. Sci. Eng., A
,
328
, pp.
98
103
.
24.
Zhan
,
M.-Y.
,
Li
,
Y.-Y.
, and
Chen
,
W.-P.
,
2008
, “
Improving Mechanical Properties of Mg-Al-Zn Alloy Sheets Through Accumulative Roll-Bonding
,”
Trans. Nonferrous Met. Soc. China
,
18
(
2
), pp.
309
314
.
25.
Bruno
,
J. C.
, and
Rios
,
P. R.
,
1995
, “
The Grain Size Distribution and the Detection of Abnormal Grain Growth of Austenite in an Eutectoid Steel Containing Biobium
,”
Scr. Metall. Mater.
,
32
(
4
), pp.
601
606
.
26.
Humphreys
,
F. J.
, and
Hatherly
,
M.
,
1995
,
Recrystallization and Related Annealing Phenomena
(Pergamon Materials Series),
Pergamon
,
Hertfordshire, UK
.
27.
Mishra
,
S. K.
,
Tiwari
,
S. M.
,
Carter
,
J. T.
, and
Tewari
,
A.
,
2014
, “
Texture Evolution During Annealing of AZ31 Mg Alloy Rolled Sheet and Its Effect on Ductility
,”
Mater. Sci. Eng.
, A,
599
, pp.
1
8
.
28.
Burke
,
J. E.
, and
Turnbull
,
D.
,
1953
, “
Recrystallization and Grain Growth
,”
Prog. Met. Phys.
,
3
(
1
), pp.
220
244
.
29.
Eichelkraut
,
H.
,
Abbruzzese
,
G.
, and
Lucke
,
K.
,
1988
, “
A Theory of Texture Controlled Grain Growth—II. Numerical and Analytical Treatment of Grain Growth in the Presence of Two Texture Components
,”
Acta Metall.
,
36
(
1
), pp.
55
68
.
30.
Bhattacharyya
,
J. J.
,
Agnew
,
S. R.
, and
Muralidharan
,
G.
,
2015
, “
Texture Enhancement During Grain Growth of Magnesium Alloy AZ31B
,”
Acta Mater.
,
86
, pp.
80
94
.
31.
Shewmon
,
P. G.
,
1956
, “
Self-Diffusion in Magnesium Single Crystals
,”
JOM
,
206
(
1
), pp.
918
922
.
32.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon
,
Oxford, UK
.
33.
Wang
,
J.
,
Iwahashi
,
Y.
,
Horita
,
Z.
,
Furukawa
,
M.
,
Nemoto
,
M.
,
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
1996
, “
An Investigation of Microstructural Stability in an Al-Mg Alloy With Submicrometer Grain Size
,”
Acta Mater.
,
44
(
7
), pp.
2973
2982
.
You do not currently have access to this content.