The structural dynamics of thin-walled parts vary as the material is removed during machining. This paper presents a new, computationally efficient reduced order dynamic substructuring method to predict the frequency response function (FRF) of the workpiece as the material is removed along the toolpath. The contribution of the removed mass to the dynamics of the workpiece is canceled by adding a fictitious substructure having the opposite dynamics of the removed material. The equations of motion of the workpiece are updated, and workpiece FRFs are evaluated by solving the hybrid set of assembled equations of motion in frequency domain as the tool removes the material between two consecutive dynamics update steps. The orders of the initial workpiece structure and the removed substructures are reduced using a model order reduction method with a newly introduced automatic master set selection criterion. The reduced order FRF update model is validated with peripheral milling tests and FRF measurements on a plate-shaped workpiece. It is shown that the proposed model provides ∼20 times faster FRF predictions than the full order finite element (FE) model.

References

1.
Budak
,
E.
, and
Altintas
,
Y.
,
1995
, “
Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates
,”
Int. J. Mach. Tools Manuf.
,
35
(
3
), pp.
459
476
.
2.
Elbestawi
,
M. A.
, and
Sagherian
,
R.
,
1991
, “
Dynamic Modeling for the Prediction of Surface Errors in the Milling of Thin-Walled Sections
,”
J. Mater. Process. Technol.
,
25
(
2
), pp.
215
228
.
3.
Seguy
,
S.
,
Dessein
,
G.
, and
Arnaud
,
L.
,
2008
, “
Surface Roughness Variation of Thin Wall Milling, Related to Modal Interactions
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
261
274
.
4.
Bravo
,
U.
,
Altuzarra
,
O.
,
López de Lacalle
,
L. N.
,
Sánchez
,
J. A.
, and
Campa
,
F. J.
,
2005
, “
Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1669
1680
.
5.
Mañé
,
I.
,
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2008
, “
Stability-Based Spindle Speed Control During Flexible Workpiece High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
2
), pp.
184
194
.
6.
Song
,
Q.
,
Ai
,
X.
, and
Tang
,
W.
,
2011
, “
Prediction of Simultaneous Dynamic Stability Limit of Time–Variable Parameters System in Thin-Walled Workpiece High-Speed Milling Processes
,”
Int. J. Adv. Manuf. Technol.
,
55
(
9–12
), pp.
883
889
.
7.
Thevenot
,
V.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Cazenave–Larroche
,
G.
,
2006
, “
Influence of Material Removal on the Dynamic Behaviour of Thin-Walled Structures in Peripheral Milling
,”
Mach. Sci. Technol.
,
10
(
3
), pp.
275
287
.
8.
Adetoro
,
O. B.
,
Sim
,
W. M.
, and
Wen
,
P. H.
,
2010
, “
An Improved Prediction of Stability Lobes Using Nonlinear Thin Wall Dynamics
,”
J. Mater. Process. Technol.
,
210
(
6–7
), pp.
969
979
.
9.
Campa
,
F. J.
,
Lopez de Lacalle
,
L. N.
, and
Celaya
,
A.
,
2011
, “
Chatter Avoidance in the Milling of Thin Floors With Bull-Nose End Mills: Model and Stability Diagrams
,”
Int. J. Mach. Tools Manuf.
,
51
(
1
), pp.
43
53
.
10.
Zhou
,
X.
,
Zhang
,
D.
,
Luo
,
M.
, and
Wu
,
B.
,
2014
, “
Toolpath Dependent Chatter Suppression in Multi-Axis Milling of Hollow Fan Blades With Ball-End Cutter
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5
), pp.
643
651
.
11.
Le Lan
,
J.-V.
,
Marty
,
A.
, and
Debongnie
,
J.-F.
,
2007
, “
Providing Stability Maps for Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1493
1496
.
12.
Kolluru
,
K.
, and
Axinte
,
D.
,
2013
, “
Coupled Interaction of Dynamic Responses of Tool and Workpiece in Thin Wall Milling
,”
J. Mater. Process. Technol.
,
213
(
9
), pp.
1565
1574
.
13.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.
14.
Ismail
,
F.
, and
Ziaei
,
R.
,
2002
, “
Chatter Suppression in Five-Axis Machining of Flexible Parts
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
115
122
.
15.
Meshreki
,
M.
,
Attia
,
H.
, and
Kövecses
,
J.
,
2011
, “
Development of a New Model for the Varying Dynamics of Flexible Pocket-Structures During Machining
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041002
.
16.
Budak
,
E.
,
Tunç
,
L. T.
,
Alan
,
S.
, and
Özgüven
,
H. N.
,
2012
, “
Prediction of Workpiece Dynamics and Its Effects on Chatter Stability in Milling
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
339
342
.
17.
Fischer
,
A.
,
Eberhard
,
P.
, and
Ambrósio
,
J.
,
2013
, “
Parametric Flexible Multibody Model for Material Removal During Turning
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011007
.
18.
Kersting
,
P.
, and
Biermann
,
D.
,
2014
, “
Modeling Techniques for Simulating Workpiece Deflections in NC Milling
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
48
54
.
19.
Craig
,
R. R.
, Jr.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
Wiley
, Hoboken, NJ.
20.
Vanc Der Valk
,
P. L. C.
,
2010
, “
Model Reduction and Interface Modeling in Dynamic Substructuring: Application to a Multi-Megawatt Wind Turbine
,” M.Sc. thesis, Delft University of Technology, Delft, The Netherlands.
21.
D'Ambrogio
,
W.
, and
Fregolent
,
A.
,
2010
, “
The Role of Interface DoFs in Decoupling of Substructures Based on the Dual Domain Decomposition
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp.
2035
2048
.
22.
Voormeeren
,
S. N.
, and
Rixen
,
D. J.
,
2012
, “
A Family of Substructure Decoupling Techniques Based on a Dual Assembly Approach
,”
Mech. Syst. Signal Process.
,
27
, pp.
379
396
.
23.
Braun
,
S. G.
, and
Ram
,
Y. M.
,
2001
, “
Modal Modification of Vibrating Systems: Some Problems and Their Solutions
,”
Mech. Syst. Signal Process.
,
15
(
1
), pp.
101
119
.
24.
Duarte
,
M. L. M.
,
1996
, “
Experimentally-Derived Structural Models for Use in Further Dynamic Analysis
,”
Ph.D. thesis
, Imperial College of Science, Technology and Medicine, London.
25.
Zhao
,
Y.-Q.
,
Chen
,
S.-H.
,
Chai
,
S.
, and
Qu
,
Q.-W.
,
2002
, “
An Improved Modal Truncation Method for Responses to Harmonic Excitation
,”
Comput. Struct.
,
80
(
1
), pp.
99
103
.
26.
Wilkinson
,
J. H.
,
1965
,
The Algebraic Eigenvalue Problem
,
Oxford University Press
,
London
.
27.
Ewins
,
D. J.
,
1984
,
Modal Testing: Theory, Practice, and Application
,
Research Studies Press
,
Letchworth, Hertfordshire, UK
.
28.
Kammer
,
D. C.
,
1991
, “
Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
251
259
.
29.
Li
,
D. S.
,
Li
,
H. N.
, and
Fritzen
,
C. P.
,
2007
, “
The Connection Between Effective Independence and Modal Kinetic Energy Methods for Sensor Placement
,”
J. Sound Vib.
,
305
(
4–5
), pp.
945
955
.
30.
O'Callahan
,
J.
,
Avitabile
,
P.
, and
Riemer
,
R.
,
1989
, “
System Equivalent Reduction Expansion Process (SEREP)
,”
7th International Modal Analysis Conference (IMAC)
, Las Vegas, NV, pp.
29
37
.
31.
Sastry
,
C. V. S.
,
Roy Mahapatra
,
D.
,
Gopalakrishnan
,
S.
, and
Ramamurthy
,
T. S.
,
2003
, “
An Iterative System Equivalent Reduction Expansion Process for Extraction of High Frequency Response From Reduced Order Finite Element Model
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
15
), pp.
1821
1840
.
32.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
,
1995
, “
Model Reduction Using Dynamic and Iterated IRS Techniques
,”
J. Sound Vib.
,
186
(
2
), pp.
311
323
.
33.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
34.
Cho
,
M.
, and
Kim
,
H.
,
2004
, “
Element-Based Node Selection Method for Reduction of Eigenvalue Problems
,”
AIAA J.
,
42
(
8
), pp.
1677
1684
.
You do not currently have access to this content.