In this paper, an additive manufacturing (AM) process, magnetic field-assisted projection stereolithography (M-PSL), is developed for 3D printing of three-dimensional (3D) smart polymer composites. The 3D-printed magnetic field-responsive smart polymer composite creates a wide range of motions, opening up possibilities for various new applications, like sensing and actuation in soft robotics, biomedical devices, and autonomous systems. In the proposed M-PSL process, a certain amount of nano- or microsized ferromagnetic particles is deposited in liquid polymer by using a programmable microdeposition nozzle. An external magnetic field is applied to direct the magnetic particles to the desired position and to form the desired orientation and patterns. After that, a digital mask image is used to cure particles in photopolymer with desired distribution patterns. The magnetic-field-assisted projection stereolithography (M-PSL) manufacturing process planning, testbed, and materials are discussed. Three test cases, an impeller, a two-wheel roller, and a flexible film, were performed to verify and validate the feasibility and effectiveness of the proposed process. They were successfully fabricated and remote controls of the printed samples were demonstrated, showing the capability of printed smart polymer composites on performing desired functions.

References

References
1.
Filipcsei
,
G.
,
Ildikó
,
C.
,
András
,
S.
, and
Miklós
,
Z.
,
2007
, “
Magnetic Field-Responsive Smart Polymer Composites
,”
Oligomers-Polymer Composites-Molecular Imprinting
,
Springer
,
Berlin
, pp.
137
189
.
2.
Pacchioni
,
G.
,
2013
, “
Smart Materials From Nanotechnology for Global Challenges
,”
J. Nanotechnol. Smart Mater.
,
1
, p. 1.
3.
Armentano
,
I.
,
Dottori
,
M.
,
Fortunati
,
E.
,
Mattioli
,
S.
, and
Kenny
,
J. M.
,
2010
, “
Biodegradable Polymer Matrix Nanocomposites for Tissue Engineering: A Review
,”
Polym. Degrad. Stab.
,
95
(
11
), pp.
2126
2146
.
4.
Gandhi
,
M. V.
, and
Thompson
,
B. D.
,
1992
,
Smart Materials and Structures
,
Springer Science & Business Media/Chapman & Hall
,
New York/London
.
5.
Hoffman
,
A. S.
,
2013
, “
Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation
,”
Adv. Drug Delivery Rev.
,
65
(
1
), pp.
10
16
.
6.
Hu
,
J.
,
Meng
,
H.
,
Li
,
G.
, and
Ibekwe
,
S. I.
,
2012
, “
A Review of Stimuli-Responsive Polymers for Smart Textile Applications
,”
Smart Mater. Struct.
,
21
(
5
), p.
053001
.
7.
Hussain
,
F.
,
Hojjati
,
M.
,
Okamoto
,
M.
, and
Gorga
,
R. E.
,
2006
, “
Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview
,”
J. Compos. Mater.
,
40
(
17
), pp.
1511
1575
.
8.
Ionov
,
L.
,
2013
, “
3D Microfabrication Using Stimuli-Responsive Self-Folding Polymer Films
,”
Polym. Rev.
,
53
(
1
), pp.
92
107
.
9.
Meng
,
H.
, and
Li
,
G.
,
2013
, “
A Review of Stimuli-Responsive Shape Memory Polymer Composites
,”
Polymer
,
54
(
9
), pp.
2199
2221
.
10.
Okano
,
T.
, ed.,
1998
,
Biorelated Polymers and Gels: Controlled Release and Applications in Biomedical Engineering
,
Academic Press
, Cambridge, MA.
11.
Reece
,
L.
,
2007
,
Smart Materials and Structures: New Research
,
Nova Publishers
,
New York
.
12.
Kim
,
K. J.
, and
Shahinpoor
,
M.
,
2003
, “
Ionic Polymer–Metal Composites—II: Manufacturing Techniques
,”
Smart Mater. Struct.
,
12
(
1
), p.
65
.
13.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
14.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
,
2005
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
,
11
(
1
), pp.
9
17
.
15.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z. G.
, and
Khoshnevis
,
B.
,
2011
, “
Development of Multi-Material Mask-Image-Projection-Based Stereolithography for the Fabrication of Digital Materials
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 8–10, pp.
65
80
.
16.
Jackson
,
B.
,
Wood
,
K.
, and
Beaman
,
J.
,
2000
, “
Discrete Multi-Material Selective Laser Sintering (M 2 SLS): Development for an Application in Complex Sand Casting Core Arrays
,” Solid Freeform Fabrication, Austin, TX, pp.
176
182
.
17.
Liew
,
C. L.
,
Leong
,
K. F.
,
Chua
,
C. K.
, and
Du
,
Z.
,
2001
, “
Dual Material Rapid Prototyping Techniques for the Development of Biomedical Devices—Part 1: Space Creation
,”
Int. J. Adv. Manuf. Technol.
,
18
(
10
), pp.
717
723
.
18.
Liew
,
C. L.
,
Leong
,
K. F.
,
Chua
,
C. K.
, and
Du
,
Z.
,
2002
, “
Dual Material Rapid Prototyping Techniques for the Development of Biomedical Devices—Part 2: Secondary Powder Deposition
,”
Int. J. Adv. Manuf. Technol.
,
19
(
9
), pp.
679
687
.
19.
Santosa
,
J.
,
Jing
,
D.
, and
Das
,
S.
,
2002
, “
Experimental and Numerical Study on the Flow of Fine Powders From Small-Scale Hoppers Applied to SLS Multi-Material Deposition—Part I
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 5–7, pp. 620–627.
20.
Bartolo
,
P. J.
, and
Gaspar
,
J.
,
2008
, “
Metal Filled Resin for Stereolithography Metal Part
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
235
238
.
21.
Kumar
,
S.
, and
Kruth
,
J. P.
,
2010
, “
Composites by Rapid Prototyping Technology
,”
Mater. Des.
,
31
(
2
), pp.
850
856
.
22.
Wurm
,
G.
,
Tomancok
,
B.
,
Holl
,
K.
, and
Trenkler
,
J.
,
2004
, “
Prospective Study on Cranioplasty With Individual Carbon Fiber Reinforced Polymere (CFRP) Implants Produced by Means of Stereolithography
,”
Surg. Neurol.
,
62
(
6
), pp.
510
521
.
23.
Pan
,
Y.
,
Zhou
,
C.
,
Chen
,
Y.
, and
Partanen
,
J.
,
2014
, “
Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031007
.
24.
Bártolo
,
P. J.
, ed.,
2011
,
Stereolithography: Materials, Processes and Applications
,
Springer Science & Business Media
, Berlin.
25.
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Smooth Surface Fabrication Based on Controlled Meniscus and Cure Depth in Microstereolithography
,”
J. Micro Nano-Manuf.
,
3
(
3
), p.
031001
.
26.
Pan
,
Y.
,
Zhao
,
X.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Smooth Surface Fabrication in Mask Projection Based Stereolithography
,”
J. Manuf. Process.
,
14
(
4
), pp.
460
470
.
27.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051011
.
28.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
, and
Samulski
,
E. T.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
.
29.
Mid-Atlantic, Inc.
, 2015, “
MRF-122EG Magneto-Rheological Fluid
,” Mid-Atlantic Rubber Co., Baltimore, MD, accessed Dec. 20,
2016
, http://www.lordmrstore.com/lord-mr-products/mrf-122eg-magneto-rheological-fluid
You do not currently have access to this content.