With many industries increasingly relying on leased equipment and machinery, many original equipment manufacturers (OEMs) are turning to product-service packages where they deliver (typically lease) the physical assets. An integrated service contract will be offered for the asset. A classic example being Rolls Royce power-by-the-hour aircraft engines. Service contracts offered by original equipment manufacturers have predominantly focused on maintenance and upkeep activities for a single asset. Interestingly enough, manufacturing industries are beginning to adopt the product-service paradigm. However, one of the unique aspects in manufacturing settings is that the leased system is often not a single asset but instead a multi-unit system (e.g., an entire production line). In this paper, we develop a lease-oriented maintenance methodology for multi-unit leased systems under product-service paradigm. Unlike traditional maintenance models, we propose a leasing profit optimization (LPO) policy to adaptively compute optimal preventive maintenance (PM) schedules that capture the following dynamics: (1) the structural dependencies of the multi-unit system, (2) opportunistic maintenance of multiple system components, and (3) leasing profit savings (LPSs). We demonstrate the performance of our multi-unit maintenance policy by using a leased automotive manufacturing line and investigate its impact on leasing profits.

References

References
1.
Yeh
,
R. H.
,
Chang
,
W. L.
, and
Lo
,
H. C.
,
2011
, “
Optimal Length of Lease Period and Maintenance Policy for Leased Equipment With a Control-Limit on Age
,”
Math. Comput. Modell.
,
54
(
9–10
), pp.
2014
2019
.
2.
Zhang
,
Z.
,
Liu
,
G.
,
Jiang
,
Z.
, and
Chen
,
Y.
,
2015
, “
A Cloud-Based Framework for Lean Maintenance, Repair, and Overhaul of Complex Equipment
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040908
.
3.
Yang
,
S.
,
Bagheri
,
B.
,
Kao
,
H. A.
, and
Lee
,
J.
,
2015
, “
A Unified Framework and Platform for Designing of Cloud-Based Machine Health Monitoring and Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040914
.
4.
Xia
,
T.
,
Jin
,
X.
,
Xi
,
L.
,
Zhang
,
Y.
, and
Ni
,
J.
,
2015
, “
Operating Load Based Real-Time Rolling Grey Forecasting for Machine Health Prognosis in Dynamic Maintenance Schedule
,”
J. Intell. Manuf.
,
26
(
2
), pp.
269
280
.
5.
Celen
,
M.
, and
Djurdjanovic
,
D.
,
2015
, “
Integrated Maintenance Decision-Making and Product Sequencing in Flexible Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041006
.
6.
Zhou
,
J.
,
Djurdjanovic
,
D.
,
Ivy
,
J.
, and
Ni
,
J.
,
2007
, “
Integrated Reconfiguration and Age-Based Preventive Maintenance Decision Making
,”
IIE Trans.
,
39
(
12
), pp.
1085
1102
.
7.
Elwany
,
A. H.
, and
Gebraeel
,
N.
,
2008
, “
Sensor-Driven Prognostic Models for Equipment Replacement and Spare Parts Inventory
,”
IIE Trans.
,
40
(
7
), pp.
629
639
.
8.
Li
,
L.
,
You
,
M.
, and
Ni
,
J.
,
2009
, “
Reliability-Based Dynamic Maintenance Threshold for Failure Prevention of Continuously Monitored Degrading Systems
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031010
.
9.
Jin
,
X.
, and
Ni
,
J.
,
2013
, “
Joint Production and Preventive Maintenance Strategy for Manufacturing Systems With Stochastic Demand
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031016
.
10.
Lee
,
S.
,
Li
,
L.
, and
Ni
,
J.
,
2013
, “
Markov-Based Maintenance Planning Considering Repair Time and Periodic Inspection
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031013
.
11.
Tao
,
X.
,
Xia
,
T.
, and
Xi
,
L.
,
2016
, “
Dynamic Opportunistic Maintenance Scheduling for Series Systems Based on TOC-VLLTW Methodology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021009
.
12.
Pham
,
H.
, and
Wang
,
H.
,
1996
, “
Imperfect Maintenance
,”
Eur. J. Oper. Res.
,
94
(
3
), pp.
425
438
.
13.
Doyen
,
L.
, and
Gaudoin
,
O.
,
2004
, “
Classes of Imperfect Repair Models Based on Reduction of Failure Intensity or Virtual Age
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
45
56
.
14.
Xia
,
T.
,
Xi
,
L.
,
Zhou
,
X.
, and
Du
,
S.
,
2012
, “
Modeling and Optimizing Maintenance Schedule for Energy Systems Subject to Degradation
,”
Comput. Ind. Eng.
,
63
(
3
), pp.
607
614
.
15.
Jaturonnatee
,
J.
,
Murthy
,
D. N. P.
, and
Boondiskulchok
,
R.
,
2006
, “
Optimal Preventive Maintenance of Leased Equipment With Corrective Minimal Repairs
,”
Eur. J. Oper. Res.
,
174
(
1
), pp.
201
215
.
16.
Pongpech
,
J.
, and
Murthy
,
D. N. P.
,
2006
, “
Optimal Periodic Preventive Maintenance Policy for Leased Equipment
,”
Reliab. Eng. Syst. Saf.
,
91
(
7
), pp.
772
777
.
17.
Yeh
,
R. H.
, and
Chang
,
W. L.
,
2007
, “
Optimal Threshold Value of Failure-Rate for Leased Products With Preventive Maintenance Actions
,”
Math. Comput. Modell.
,
46
(
5–6
), pp.
730
737
.
18.
Yeh
,
R. H.
,
Kao
,
K. C.
, and
Chang
,
W. L.
,
2009
, “
Optimal Preventive Maintenance Policy for Leased Equipment Using Failure Rate Reduction
,”
Comput. Ind. Eng.
,
57
(
1
), pp.
304
309
.
19.
Chang
,
W. L.
, and
Lo
,
H. C.
,
2011
, “
Joint Determination of Lease Period and Preventive Maintenance Policy for Leased Equipment With Residual Value
,”
Comput. Ind. Eng.
,
61
(
3
), pp.
489
496
.
20.
Schutz
,
J.
, and
Rezg
,
N.
,
2013
, “
Maintenance Strategy for Leased Equipment
,”
Comput. Ind. Eng.
,
66
(
3
), pp.
593
600
.
21.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
,
2007
, “
Maintenance Opportunity Planning System
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
661
668
.
22.
Rachaniotis
,
N. P.
, and
Pappis
,
C. P.
,
2008
, “
Preventive Maintenance and Upgrade System: Optimizing the Whole Performance System by Components' Replacement or Rearrangement
,”
Int. J. Prod. Econ.
,
112
(
1
), pp.
236
244
.
23.
Zhou
,
X.
,
Xi
,
L.
, and
Lee
,
J.
,
2009
, “
Opportunistic Preventive Maintenance Scheduling for a Multi-Unit Series System Based on Dynamic Programming
,”
Int. J. Prod. Econ.
,
118
(
2
), pp.
361
366
.
24.
Bedford
,
T.
,
Dewan
,
I.
,
Meilijson
,
I.
, and
Zitrou
,
A.
,
2011
, “
The Signal Model: A Model for Competing Risks of Opportunistic Maintenance
,”
Eur. J. Oper. Res.
,
214
(
3
), pp.
665
673
.
25.
Zou
,
J.
,
Arinez
,
J.
,
Chang
,
Q.
, and
Lei
,
Y.
,
2016
, “
Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121009
.
26.
Xia
,
T.
,
Xi
,
L.
,
Zhou
,
X.
, and
Lee
,
J.
,
2012
, “
Dynamic Maintenance Decision-Making for Series-Parallel Manufacturing System Based on MAM-MTW Methodology
,”
Eur. J. Oper. Res.
,
221
(
1
), pp.
231
240
.
27.
Gu
,
X.
,
Jin
,
X.
, and
Ni
,
J.
,
2015
, “
Prediction of Passive Maintenance Opportunity Windows on Bottleneck Machines in Complex Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031017
.
28.
Ni
,
J.
,
Gu
,
X.
, and
Jin
,
X.
,
2015
, “
Preventive Maintenance Opportunities for Large Production Systems
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
447
450
.
29.
Xia
,
T.
,
Jin
,
X.
,
Xi
,
L.
, and
Ni
,
J.
,
2015
, “
Production-Driven Opportunistic Maintenance for Batch Production Based on MAM-APB Scheduling
,”
Eur. J. Oper. Res.
,
240
(
3
), pp.
781
790
.
30.
Bian
,
L.
, and
Gebraeel
,
N.
,
2014
, “
Stochastic Modeling and Real-Time Prognostics for Multi-Component Systems With Degradation Rate Interactions
,”
IIE Trans.
,
46
(
5
), pp.
470
482
.
31.
Tao
,
X.
,
Xia
,
T.
, and
Xi
,
L.
,
2015
, “
Environment Factor-Based Equipment Hazard Rate Prognosis for Maintenance Scheduling
,”
Proc. Inst. Mech. Eng., Part B
(published online).
32.
Fang
,
X.
,
Zhou
,
R.
, and
Gebraeel
,
N.
,
2015
, “
An Adaptive Functional Regression-Based Prognostic Model for Applications With Missing Data
,”
Reliab. Eng. Syst. Saf.
,
133
, pp.
266
274
.
33.
Yeh
,
R. H.
,
Kao
,
K. C.
, and
Chang
,
W. L.
,
2011
, “
Preventive-Maintenance Policy for Leased Products Under Various Maintenance Costs
,”
Expert Syst. Appl.
,
38
(
4
), pp.
3558
3562
.
You do not currently have access to this content.