One of the challenges in micromilling processing is chatter, an unstable phenomenon which has a larger impact on the microdomain compared to macro one. The minimization of tool chatter is the key to good surface quality in the micromilling process, which is also related to the milling tool and the milling structure system dynamics. Frequency response function (FRF) at micromilling tool point describes dynamic behavior of the whole micromilling machine-spindle-tool system. In this paper, based on receptance coupling substructure analysis (RCSA) and the consideration of rotational degree-of-freedom, tool point frequency response function of micromilling dynamic system is obtained by combining two functions calculated from beam theory and obtained by hammer testing. And frequency response functions solved by Timoshenko's and Euler's beam theories are compared. Finally, the frequency response function is identified as the modal parameters, and the modal parameters are transformed into equivalent structural parameters of the physical system. The research work considers the difference of theoretical modeling between the micromilling and end-milling tool and provides a base for the dynamic study of the micromilling system.

References

References
1.
Salgado
,
M. A.
,
López de Lacalle
,
L. N.
,
Lamikiz
,
A.
,
Muñoa
,
J.
, and
Sánchez
,
J. A.
,
2005
, “
Evaluation of the Stiffness Chain on the Deflection of End-Mills Under Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
45
(
6
), pp.
727
739
.
2.
Wang
,
J. H.
, and
Liou
,
C. M.
,
1990
, “
Identification of Parameters of Structural Joints by Use of Noise-Contaminated FRFs
,”
J. Sound Vib.
,
142
(
2
), pp.
227
261
.
3.
Liu
,
W.
,
2000
, “
Structural Dynamic Analysis and Testing of Coupled Structures
,” Ph.D. thesis, Imperial College of London, London, UK.
4.
Duncan
,
G. S.
,
Tummmond
,
M. F.
, and
Schmitz
,
T. L.
,
2005
, “
An Investigation of the Dynamic Absorber Effect in High-Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
497
507
.
5.
Schmitz
,
T.
,
Davies
,
M.
,
Medicus
,
K.
, and
Snyder
,
J.
,
2001
, “
Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis
,”
CIRP Ann.-Manuf. Technol.
,
50
(
1
), pp.
263
268
.
6.
Schmitz
,
T.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
.
7.
Schmitz
,
T. L.
, and
Donalson
,
R. R.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann.-Manuf. Technol.
,
49
(
1
), pp.
303
308
.
8.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), p.
700
.
9.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2006
, “
Receptance Coupling for Dynamics Prediction of Assemblies With Coincident Neutral Axes
,”
J. Sound Vib.
,
289
(
4–5
), pp.
1045
1065
.
10.
Schmitz
,
T. L.
,
2010
, “
Torsional and Axial Frequency Response Prediction by RCSA
,”
Prec. Eng.
,
34
(
2
), pp.
345
356
.
11.
Schmitz
,
T. L.
,
Powell
,
K.
,
Won
,
D.
,
Scott Duncan
,
G.
,
Gregory Sawyer
,
W.
, and
Ziegert
,
J. C.
,
2007
, “
Shrink Fit Tool Holder Connection Stiffness/Damping Modeling for Frequency Response Prediction in Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1368
1380
.
12.
Park
,
S.
,
Altintas
,
Y.
, and
Movahhedy
,
M.
,
2003
, “
Receptance Coupling for End Mills
,”
Int. J. Mach. Tools Manuf.
,
43
(
9
), pp.
889
896
.
13.
Cheng
,
C.-H.
,
Schmitz
,
T. L.
,
Arakere
,
N.
, and
Duncan
,
G. S.
,
2005
, “
An Approach for Micro End Mill Frequency Response Predictions
,”
ASME
Paper No. IMECE2005-81215.
14.
Mascardelli
,
B. A.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2008
, “
Substructure Coupling of Micro End Mills to Aid in the Suppression of Chatter
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011010
.
15.
Rahnama
,
R.
,
Sajjadi
,
M.
, and
Park
,
S. S.
,
2009
, “
Chatter Suppression in Micro End Milling With Process Damping
,”
J. Mater. Process. Technol.
,
209
(
17
), pp.
5766
5776
.
16.
Park
,
S. S.
, and
Rahnama
,
R.
,
2010
, “
Robust Chatter Stability in Micro-Milling Operations
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
391
394
.
17.
Mascardelli
,
B. A.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2008
, “
Substructure Coupling of Microend Mills to Aid in the Suppression of Chatter
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011010
.
18.
Ertürk
,
A.
,
Özgüven
,
H. N.
, and
Budak
,
E.
,
2006
, “
Analytical Modeling of Spindle–Tool Dynamics on Machine Tools Using Timoshenko Beam Model and Receptance Coupling for the Prediction of Tool Point FRF
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
1901
1912
.
19.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Microend Mill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031119
.
20.
Bishop
,
R. E. D.
, and
Johnson
,
D. C.
,
1979
,
The Mechanics of Vibration
,
Elsevier, Amsterdam
,
The Netherlands
.
21.
Kops
,
L.
, and
Vo
,
D. T.
,
1990
, “
Determination of the Equivalent Diameter of an End Mill Based on Its Compliance
,”
CIRP Ann.-Manuf. Technol.
,
39
(
1
), pp.
93
96
.
You do not currently have access to this content.