This technical brief is the extension of our previous work developed by Zhang et al. (2016, “Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel,” ASME J. Manuf. Sci. Eng., 138(7), p. 074502). We investigated the effects of sequential cuts on microstructure alteration in hard turning of AISI52100 steel. Samples undergone five sequential cuts are prepared with different radial feed rates and cutting speeds. Optical microscope and X-ray diffraction (XRD) are employed to analyze the microstructures of white layer and bulk materials after sequential cutting processes. Through the studies we first find out the increasing of white layer thickness in the sequential cuts. This trend in sequential cuts does work for different process parameters, belonging to the usually used ones in hard turning of AISI52100 steel. In addition, we find that the white layer thickness increases with the increasing of cutting speed, as recorded in the literature. To reveal the mechanism of white layer formation, XRD measurements of white layers generated in the sequential cuts are made. As a result retained austenite in white layers is identified, which states that the thermally driven phase transformations dominate the white layer formation, rather than the severe plastic deformation in cuts. Furthermore, retained austenite contents in sequential cuts with different process parameters are discussed. While using a smaller radial feed rate, the greater retained austenite content found in experiments is attributed to the generated compressive surface residual stresses, which possibly restricts the martensitic transformation.

References

References
1.
Griffiths
,
B. J.
,
1987
, “
Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes
,”
ASME J. Tribol.
,
109
(
3
), pp.
525
530
.
2.
Stead
,
J. W.
,
1912
, “
Micro-Metallography and its Practical Application
,”
J. West. Scott. Iron Steel Inst.
,
19
, pp.
169
204
.
3.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1998
, “
Process Effects on White Layer Formation in Hard Turning
,”
Trans. North Am. Manuf. Res. Inst. SME
,
XXVI
, pp.
117
122
.
4.
Akcan
,
S.
,
Shah
,
S.
,
Moylan
,
S. P.
,
Chhabra
,
P. N.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
1999
, “
Characteristics of White Layers Formed in Steels by Machining
,”
ASME Med
,
10
, pp.
789
795
.
5.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
402
414
.
6.
Sauvage
,
X.
,
Le Breton
,
J. M.
,
Guillet
,
A.
,
Meyer
,
A.
, and
Teillet
,
J.
,
2003
, “
Phase Transformations in Surface Layers of Machined Steels Investigated by X-Ray Diffraction and Mössbauer Spectrometry
,”
Mater. Sci. Eng. A
,
362
(
1
), pp.
181
186
.
7.
Umbrello
,
D.
, and
Rotella
,
G.
,
2012
, “
Experimental Analysis of Mechanisms Related to White Layer Formation During Hard Turning of AISI 52100 Bearing Steel
,”
Mater. Sci. Technol.
,
28
(
2
), pp.
205
212
.
8.
Mondelin
,
A.
,
Valiorgue
,
F.
,
Rech
,
J.
,
Coret
,
M.
, and
Feulvarch
,
E.
,
2013
, “
Modeling of Surface Dynamic Recrystallisation During the Finish Turning of the 15-5PH Steel
,”
Procedia CIRP
,
8
, pp.
311
315
.
9.
Mondelin
,
A.
,
Valiorgue
,
F.
,
Coret
,
M.
,
Feulvarch
,
E.
, and
Rech
,
J.
,
2011
, “
Surface Integrity Prediction in Finish Turning of 15-5PH Stainless Steel
,”
Procedia Eng.
,
19
, pp.
270
275
.
10.
Sasahara
,
H.
,
Obikawa
,
T.
, and
Shirakashi
,
T.
,
1996
, “
FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
448
453
.
11.
Outeiro
,
J. C.
, and
Umbrello
,
D.
,
2006
, “
Experimental and FEM Analysis of Cutting Sequence on Residual Stresses in Machined Layers of AISI 316L Steel
,”
Materials Science Forum
, Vol.
524
,
Trans Tech Publications
,
Zurich, Switzerland
, pp.
179
184
.
12.
Liu
,
C. R.
, and
Guo
,
Y. B.
,
2000
, “
Finite Element Analysis of the Effect of Sequential Cuts and Tool–Chip Friction on Residual Stresses in a Machined Layer
,”
Int. J. Mech. Sci.
,
42
(
6
), pp.
1069
1086
.
13.
Schulze
,
V.
,
Osterried
,
J.
, and
Strauß
,
T.
,
2011
, “
FE Analysis on the Influence of Sequential Cuts on Component Conditions for Different Machining Strategies
,”
Procedia Eng.
,
19
, pp.
318
323
.
14.
Dehmani
,
H.
,
Salvatore
,
F.
, and
Hamdi
,
H.
,
2013
, “
Numerical Study of Residual Stress Induced by Multi-Steps Orthogonal Cutting
,”
Procedia CIRP
,
8
, pp.
299
304
.
15.
Zhang
,
X.-M.
,
Chen
,
L.
, and
Ding
,
H.
,
2016
, “
Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074502
.
16.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1999
, “
White Layers and Thermal Modeling of Hard Turned Surfaces
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1863
1881
.
17.
Hosseini
,
S. B.
,
Beno
,
T.
,
Klement
,
U.
,
Kaminski
,
J.
, and
Ryttberg
,
K.
,
2014
, “
Cutting Temperatures During Hard Turning Measurements and Effects on White Layer Formation in Aisi 52100
,”
J. Mater. Process. Technol.
,
214
(
6
), pp.
1293
1300
.
18.
Müller
,
B.
, and
Renz
,
U.
,
2001
, “
Development of a Fast Fiber-Optic Two-Color Pyrometer for the Temperature Measurement of Surfaces With Varying Emissivities
,”
Rev. Sci. Instrum.
,
72
(
8
), pp.
3366
3374
.
19.
Ueda
,
T.
,
Hosokawa
,
A.
, and
Yamamoto
,
A.
,
1986
, “
Measurement of Grinding Temperature Using Infrared Radiation Pyrometer With Optical Fiber
,”
ASME J. Eng. Ind.
,
108
(
4
), pp.
247
251
.
20.
Han
,
S.
,
Melkote
,
S. N.
,
Haluska
,
M. S.
, and
Watkins
,
T. R.
,
2008
, “
White Layer Formation Due to Phase Transformation in Orthogonal Machining of AISI 1045 Annealed Steel
,”
Mater. Sci. Eng. A
,
488
(
1
), pp.
195
204
.
21.
Coelho
,
R. T.
,
Ng
,
E.-G.
, and
Elbestawi
,
M. A.
,
2007
, “
Tool Wear When Turning Hardened AISI 4340 With Coated PCBN Tools Using Finishing Cutting Conditions
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
263
272
.
22.
Akbar
,
F.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2008
, “
An Evaluation of Heat Partition in the High-Speed Turning of AISI/SAE 4140 Steel With Uncoated and TiN-Coated Tools
,”
Proc. Inst. Mech. Eng. Part B
,
222
(
7
), pp.
759
771
.
23.
Al-Zkeri
,
I. A.
,
2007
, “
Finite Element Modeling of Hard Turning
,”
Ph.D. thesis
, the Ohio State University, Columbus, OH.
24.
Majumdar
,
P.
,
Jayaramachandran
,
R.
, and
Ganesan
,
S.
,
2005
, “
Finite Element Analysis of Temperature Rise in Metal Cutting Processes
,”
Appl. Therm. Eng.
,
25
(
14
), pp.
2152
2168
.
25.
Courbon
,
C.
,
Mabrouki
,
T.
,
Rech
,
J.
,
Mazuyer
,
D.
, and
D'Eramo
,
E.
,
2013
, “
On the Existence of a Thermal Contact Resistance at the Tool-Chip Interface in Dry Cutting of AISI 1045: Formation Mechanisms and Influence on the Cutting Process
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1311
1325
.
26.
Kundrák
,
J.
,
Gácsi
,
Z.
,
Gyáni
,
K.
,
Bana
,
V.
, and
Tomolya
,
G.
,
2012
, “
X-Ray Diffraction Investigation of White Layer Development in Hard-Turned Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
62
(
5–8
), pp.
457
469
.
27.
Hosseini
,
S. B.
,
Dahlgren
,
R.
,
Ryttberg
,
K.
, and
Klement
,
U.
,
2014
, “
Dissolution of Iron-Chromium Carbides During White Layer Formation Induced by Hard Turning of AISI 52100 Steel
,”
Procedia CIRP
,
14
, pp.
107
112
.
28.
Xu
,
X. Q.
,
2013
, “
Retained Austenite and Reverse Austenite
,” Dongbei Special Steel Group Co., LTChina, D., Report No. 2013-3 (in Chinese).
You do not currently have access to this content.